
Preliminary Documentation Release

PDR3056
THE COBOL

PROGRAMMER'S
GUIDE

P/N 3064-001

PRIME SOFTWARE DOCUMENTATION FAMILY

FORTRAN
IV

P0R3O57

HIGH-LEVEL LANGUAGE USER GUIDES

/ ^ " T H I S
JC^ DOCUMENT

COBOL

PDR3056

RPG 11

IDR303I

CBASIC

PDR30B5

INTERPRETIVE

BASIC

MANI8I3
PTU08
PTU29
PTU38

OPERATING SYSTEM
REFERENCE

INTERACTIVE
COMMANDS

MAN2602
PTU3I
PTU42

PRIMOS
INTERNALS AND
FILE SYSTEM

PDR3II0
MAN2604

PTU30

COMPUTER
ROOM

MAN2603
PTU32
PTU43

SOFTWARE

LIBRARY

PDR3I06

ASSEMBLY LANGUAGE
USER GUIDE

CPU SYSTEM
REFERENCE

MANI67I
MAN2798

PMA

PDR3059

SOFTWARE SUBSYSTEM
REFERENCE

DBMS

IDR3043
IDR3044
IDR3045
IDR3046

FORMS

IDR3040

MIOAS

PDR306I

EDITOR/
RUNOFF

PDR3I04

TASK

USING PRIMOS

ENTERING AND EDIT ING

SOURCE PROGRAMS

(USING TEXT EDITOR)

CONVERTING PROGRAMS

FROM OTHER SYSTEMS

COMPILING

LOADING, R - IDENTITY

(NON-SEGMENTED)

LOADING, V - IDENTITY

(SEGMENTED)

EXECUTING

DEBUGGING

F I L E ORGANIZATION

SHARED PROCEDURES

AND OTHER ADVANCED

TECHNIQUES

USING DBMS

USING MIDAS

USING FORMS

INTERFACING TO OTHER

LANGUAGES

COBOL LANGUAGE -

SYNTAX, IMPLEMEN

TATION AND PRIME

EXTENSIONS

INTERPRETING ERROR

MESSAGES

COVERAGE IN
THIS GUIDE

SECTIONS 3 , 4 , 9 ,

SECTION 4

SECTION 1

SECTIONS 5 , 2 1

SECTION 6

SECTION 7 , 2 2

SECTION 8

SECTION 8

APPENDIX B

SECTION 10

SECTION 1 1

SECTIONS 1 1 , 1 9

SECTION 1 1

SECTION 1 1

SECTIONS 2 AND

12 THRU 20

APPENDIX G

SUPPLB-ENTARY INFORMATION IN REFERENCE DOCUMENTS

ALL PRIMOS COMMANDS USEFUL TO COBOL ARE SUMMARIZED I N T H I S PDR AND W I L L BE DESCRIBED I N D E T A I L I N

THE FDR. SEE MAN2602 FOR FULL DETAILS ON ALL INTERACTIVE COMMANDS. P D R i l O l CONTAINS A S I M P L I F I E D

INTRODUCTION TO THE FUNDAMENTALS OF PRIMOS FOR NEW USERS.

SECTION 4 PRESENTS THE BASICS OF TEXT EDITOR USAGE FOR SOURCE PROGRAM PREPARATION. PDR3104 DESCRIBES

MORE COMPLEX TEXT PROCESSING C A P A B I L I T I E S .

NONE REQUIRED

NONE REQUIRED

NONE REQUIRED - LOAD REFERENCE DATA FOR COBOL I S COMPLETE I N T H I S GUIDE.

NONE REQUIRED - SEG REFERENCE DATA FOR COBOL IS COMPLETE I N THIS GUIDE. OTHER SEG FUNCTIONS

AT ASSEMBLY-LANGUAGE LEVEL ARE DEFINED I N PDR3059.

NONE REQUIRED

TO BE INCLUDED I N FDR.

NONE REQUIRED

TEMPLATE BUILDING TECHNIQUES ARE DESCRIBED IN P D R 3 0 5 9 ,

TH IS GUIDE CONTAINS A SUMMARY. SEE IDR3043 , IDR3044 AND IDR3045 FOR DETAILS .

T H I S GUIDE CONTAINS A SUMMARY. SEE PDR3061 FOR DETA ILS .

THIS GUIDE CONTAINS A SUMMARY. SEE IDR3O40 FOR DETAILS .

NONE REQUIRED

NONE REQUIRED

NONE REQUIRED. APPENDIX 6 CONTAINS A COMPLETE L I S T OF COMPILER, LOADER, SEG AND RUN-TIME MESSAGES.

PRIME'S COBOL PROGRAMMER'S GUIDE

This guide documents Prime COBOL and all supporting PRIMOS operating
system features as implemented at Master Disk Revision Level 14. It
is organized to make life easier for you, the COBOL application
programmer.

We assume you know COBOL, and will easily adapt to Prime's
implementation and extensions, which are fully defined in the reference
sections of this guide.

PRIMOS, on the other hand, is a large and versatile operating system.
It is no small task to sift through all the reference documentation for
PRIMOS and its file system, libraries, utilities, and supporting
software to find what you need to get a COBOL application running.

To save you the trouble, we've done all that for you in the early
sections of this guide, by:

• Selecting the PRIMOS capabilities that are of key importance to
the COBOL programmer

• Presenting these capabilities in the usual order of COBOL program
development

• Including all the details on the essential tools

• Summarizing optional, convenience and advanced features

• Leaving out what is irrelevant.

The result is a single document containing everything you need to know
to write, modify, compile, load, execute, and debug most COBOL
application programs.

In exceptional cases, you may need to refer to supporting reference
documents (illustrated). For example, this guide gives enough
information on Prime's DBMS, MIDAS and FORMS subsystems for you to
evaluate whether they are useful to your application. To develop
applications using these complex subsystems, however, you need access
to the complete details in the reference documents.

The accompanying table gives guidelines on the tasks that are fully
described in this guide and the extent to which the reference documents
apply.

We hope you will find this to be a helpful guide to the particulars of
COBOL programming within the PRIMOS operating system. We invite
comments on the organization and philosophy of this guide, as well as
its contents, accuracy and clarity.

All correspondence on suggested changes to this document should be
directed to:

Penny Crowell, Technical Writer
Technical Publications Department
Prime Computer, Inc.
145 Pennsylvania Avenue
Framingham, MA 01701

Acknowledgements:

We wish to thank the members of the COBOL PROGRAMMERS GUIDE team and
also the non-team members, both customer and Prime, who contributed to
and reviewed this PDR.

PRIME DOCUMENTATION TYPES

IDR Initial Documentation Release: provides usable, accurate
advanced information without regard to style and format.

PDR Preliminary Documentation Release: provides more complete and
accurate information about the product, but is not in final
format.

FDR Final Documentation Release: a complete product description:
edited, formatted and produced at a high standard
of graphic quality

MAN Manual: early reference documents to be phased out by PDR's and
FDR's.

PTU Prime Technical Update: interim updates to existing documents.

Copyright 1977 by
Prime Computer, Incorporated

145 Pennsylvania Avenue
Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

First Printing November 1977

CONTENTS

Section Title

PART I AN OVERVIEW OF PRIME'S COBOL

SECTION 1 INTRODUCTION

THIS DOCUMENT

Purpose and Audience
Organization and Usage
This Version

PRIME CONVENTIONS
RELATED DOCUMENTS

Page

1-1

1-1

1-1
1-1
1-4

1-4
1-5

SECTION 2 PRIME COBOL SUMMARY

FEATURES
SYSTEM FILES
VCOBLB

2-1

2-1
2-2
2-3

SECTION 3 COBOL AND PRIMOS

OPERATING SYSTEM MODES

64R Mode, Prime 300, 400, 500
64V Mode, Prime 400, 500

FILE SYSTEM SUMMARY
PROGRAM ENVIRONMENTS
SYSTEM RESOURCES SUPPORTING COBOL

3-1

3-1

3-1
3-1

3-1
3-1
3-1

PART II USING THE PRIME SYSTEM

SECTION 4 SYSTEM ACCESS

ADDRESSING THE SYSTEM

PRIMOS Command Summary

CREATING AND ENTERING SOURCE PROGRAMS

Conversion Considerations
The Editor/Editing and Modifying Programs

4-1

4-1

4-1

4-4

4-4
4-8

November 1977

CONTENTS (Cant)

Section Title Page

Command Summary 4-13
Listing Programs 4-17
Renaming and Deleting Files 4-18

SECTION 5 COMPILING A SOURCE PROGRAM 5-1

INTRODUCTION 5-1
USING THE COMPILER 5-1

End of Compilation Message 5-2
Compiler Error Messages 5-2
Compiler Warning Messages 5-3
Program Statistics (64V) 5-3

COMPILER FUNCTIONS 5-4

Specify Input/Output Devices 5-4
Memory Mode 5-5
Listings 5-5

SECTION 6 LOADING AND LINKING 6-1

INTRODUCTION 6-1

Desectorization 6-2

Clearing The User Address Space 6-3

INVOKING THE LOADER 6-3
USING THE LOADER UNDER PRIMOS 6-4
COMMAND FORMATS 6-5

Loader Commands 6-6
Most Frequently Used Loader Commands 6-7
Less Frequently Used Loader Commands 6-10

LOADER ERROR MESSAGES 6-15

SECTION 7 LOADING SEGMENTED PROGRAMS 7-1

INTRODUCTION 7-1

Segmented Runfiles 7-1
SEG's Loader 7-1
Functional Structure of SEG's Loader 7-2
Object File as Input 7-2
The Stack 7-3
SEG Commands 7-3
Vestigal Commands 7-5
SEG Messages 7-5

REV. 0

CONTENTS (Cont)

Section Title Page

USING SEG 7-5

Command Files 7-6
Filenames 7-6
Frequently Used and Essential Commands Applications

Functions 7-6

SECTION 8 EXECUTING THE LOADED PROGRAM 8-1

INTRODUCTION 8-1
EXECUTION OF PROGRAM MEMORY IMAGES SAVED BY THE

LINKING LOADER (64R) 8-1
EXECUTION OF SEGMENTED RLINFILES SAVED BY SEG'S

LOADER (64V) 8-2
CM$L (64R) C$IN (64V) UTILITY PROGRAMS 8-2
RUN-TIME ERROR MESSAGES 8-4

SECTION 9 SORT PROCEDURES 9-1

EXTERNAL/INTERNAL SORT ROUTINES 9-1

External Operating System COBOL Sort Procedures 9-1

Internal Application Sort Subroutines 9-3
Sort Considerations 9-4

PART III ADVANCED CONCEPTS

SECTION 10 COBOL PROGRAM ENVIRONMENTS, EXPANDED 10-1

INTRODUCTION 10-1
INTERACTIVE 10-1
COMMAND FILES 10-1
PHANTOM USERS 10-1
CX MODE 10-1
SHARED PROCEDURES 10-2

SECTION 11 MANAGEMENT SYSTEMS AND LANGUAGE INTERFACE 11-1

INTRODUCTION 11-1
MIDAS (Multiple Keyed Index Direct Access System) 11-1

Requirements 11-1
Using MIDAS 11-1
The Template 11-3
Creating the Template (CREATK) 11-3
Minimum Dialogue 11-3
REMAKE Program 11-7
KIDDEL Program 11-8

November 1977

CONTENTS (Cont)

Section Title

DBMS (Database Management System)
FORMS (Forms Management System)
OTHER PROGRAMMING LANGUAGES

Page

11-8
11-8
11-9

PART IV REFERENCE

CONCEPTS

SECTION 12 FUNDAMENTAL CONCEPTS OF COBOL

DIVISIONS OF A COBOL PROGRAM: A SUMMARY

Sample Program
Sample Listing

LANGUAGE CONSIDERATIONS

Format Notation
Punctuation Rules
Coding Rules
Prime Character Set
Collating Sequence

LANGUAGE SPECIFICATIONS

COBOL Character Set
Character Strings
Picture Character - Strings
Word Formation
Reserved Words
Programmer-Defined Words
Qualification of Names
Classes of Data
Data Levels
Data Representation
Standard Alignment Rules
Algebraic Signs
Arithmetic Expressions
Arithmetic Statements
Overlapping Operands
Conditional Expressions
Subscripting
Direct and Relative Indexing

12-1

12-1

12-4
12-7

12-9

12-9
12-10
12-10
12-11
12-12

12-12

12-12
12-12
12-12
12-12
12-15
12-17
12-21
12-23
12-24
12-25
12-26
12-27
12-28
12-31
12-31
12-31
12-37
12-38

NUCLEUS

SECTION 13 IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

Example: REF2

13-1

13-1

13-3

REV. 0

CONTENTS (Cont)

Section Title Page

SECTION 14 ENVIRONMENT DIVISION 14-1

ENVIRONMENT DIVISION 14-1

Configuration Section 14-3

Input-Output Section 14-5
Example: REF2 14-9

SECTION 15 DATA DIVISION 15-1

DATA DIVISION 15-1

File Section 15-3

File Description 15-4
Record Description 15-15
Working-Storage Section 15-46
Linkage Section 15-48
Example: REF2 15-50

SECTION 16 PROCEDURE DIVISION 16-1

PROCEDURE DIVISION 16-1
COBOL VERBS QUICK INDEX 16-6

Example: REF2 16-73
Compile Sequence For REF2 - 64R, 64V 16-79
Listing File For REF2 - 64R 16-80
Load Sequence For REF2 - 64R, 64V 16-88
CREATK Sequence For REF2 - 64R, 64V 16-89
Execute Sequence for REF2 - 64R, 64V 16-91

FUNCTIONAL PROCESSING MODULES

SECTION 17 INTER-PROGRAM COMMUNICATION 17-1

DEFINITION 17-1
LINKAGE SECTION 17-2
PROCEDURE DIVISION 17-3

CALL 17-3
EXIT PROGRAM 17-3
ENTER 17-3
Example 17-5

November 1977

CONTENTS (Cont)

Section Title Page

SECTION 18 TABLE HANDLING 18-1

DEFINITION 18-1
DATA DIVISION 18-2

OCCURS 18-2
INDEXED BY 18-2
Subscripting 18-4

PROCEDURE DIVISION 18-5

SET 18-5
SEARCH 18-5

SECTION 19 INDEXED SEQUENTIAL FILES/INDEXED 1-0 19-1

DEFINITION 19-1
FILE CONTROL 19-2
PROCEDURE DIVISION 19-6

CLOSE 19-7
DELETE 19-8
OPEN 19-9
READ 19-10
REWRITE 19-12
START 19-13
WRITE 19-16

SECTION 20 RELATIVE FILE PROCESSING/RELATIVE 1-0 20-1

DEFINITION 20-1
FILE CONTROL 20-2
PROCEDURE DIVISION 20-5

CLOSE 20-6
DELETE 20-7
OPEN 20-8
READ 20-9
REWRITE 20-11
START 20-12
WRITE 20-14

UTILITIES

SECTION 21 COMPILER REFERENCE INFORMATION 21-1

COBOL COMPILER PARAMETERS 21-1

REV. 0

CONTENTS (Cont)

Section Title Page

Prime COBOL Compiler Mnemonics 21-1
Explicit Setting of the A Register 21-3

COMPILER-GENERATED FILES 21-6

SECTION 22 SEG REFERENCE 22-1

COMMAND SUMMARY 22-1

APPENDIX A PRIME COBOL SUMMARY A-l

APPENDIX B FILE ORGANIZATION B-l

APPENDIX C CREATING ISAM AND RELATIVE FILES C-l

APPENDIX D REFERENCE TABLES D-l

COBOL VERB INDEX D-l
FILE STATUS KEY DEFINITIONS D-2
PERMISSIBLE INPUT/OUTPUT STATEMENTS D-4
PERMISSIBLE MOVES D-5

APPENDIX E ASCII CHARACTER SET E-l

COLLATING SEQUENCE E-l

ASCII CHARACTER SET E-2

APPENDIX F COBOL SYMBOLS F-l

APPENDIX G ERROR MESSAGES G-l

COMPILE-TIME ERROR MESSAGES G-2
COMPILE-TIME WARNING MESSAGES G-12
RMODE RUN-TIME ERROR MESSAGES G-13
VMODE RUN-TIME ERROR MESSAGES G-16
SEG LOADER ERROR MESSAGES G-20

APPENDIX H RESERVED WORDS H-l

November 1977

CONTENTS (Cont)

Section Title Page

APPENDIX I CONVERSION TABLES 1-1

HEXADECIMAL AND DECIMAL CONVERSION 1-1
OCTAL AND DECIMAL CONVERSION 1-1
HEXIDECIMAL ADDITION TABLE 1-2

APPENDIX J EXPANDED LISTING FOR VMODE J-l

V-MODE J-l
SAMPLE (REF2) J-3

REV. 0 10

ILLUSTRATIONS

Figure Title Page

6-1 Base Area Orientation 6-2

11-1 User's Functional Overview of the MIDAS File

System 11-2

12-1 Standard COBOL Coding Sheets 12-11

12-2 COBOL Characters 12-14

12-3 Classes of Data 12-23

15-1 Examples: PICTURE Clause 15-35

15-2 Examples: BLANK WHEN ZERO 15-42

16-1 Rounding Results 16-5

16-2 Nested IF Tree Structure 16-31

16-3 SEARCH Operation Flowchart 16-51

21-2 Bit Conversion, Binary/Octal 21-4

21-2 Bit-Mnemonic Correspondence, A Register 21-5

11 November 1977

TABLES

Table Title Page

6-1 Load State Definition 6-10

12-1 Special-Character Words: Arithmetic Operators/

Relation Characters 12-16

12-2 Data Representation and Usage 12-26

12-3 Symbol Combinations in Arithmetic Expressions 12-30

14-1 Device Specifications 14-6

15-1 Label Options 15-7

15-2 Categories of Data and Editing 15-30

15-3 Results of Sign Control Symbols in Editing 15-31

15-4 Sign Representation 15-38

16-1 Prime COBOL Verb Index 16-6

16-2 Permissible Moves 16-35

16-3 OPEN Statements and Access Modes 16-38

16-4 Carriage Control Integer Values 16-70

19-1 File Status Key Definitions, Indexed Sequential

Files 19-5

19-2 OPEN Statements Vs. Access Mode, Indexed 1-0 19-9

20-1 File Status Key Definitions, Relative 1-0 20-4

20-2 OPEN Statements Vs. Access Mode, Relative 1-0 20-8

21-1 Compiler File Specifications 21-2

21-2 Input/Output Device Bit Specification 21-4

21-3 PRIM0S File Units 21-6

D-l Prime COBOL Verb Index D-l

D-2 File Status Key Definitions D-2

D-3 Permissible Input/Output Statements - OPEN

Statements and Access Modes D-4

D-4 Permissible Moves D-5

REV. 0 i - 12

" \

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL report and speci
fications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do
so. However, all such organizations are requested to reproduce this
section as part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention 'COBOL' in acknow
ledgement of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data System Languages.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation, Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator,
Form No. F23-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-
2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part,
in the COBOL specification in programming manuals or similar publications.

--from the ANSI COBOL Standard

(X3.23-1974)

13 November 1977

r

P A R T I

AN O V E R V I E W OF P R I M E ' S C O B O L

r

PDR3056 INTRODUCTION

SECTION 1

INTRODUCTION

THIS DOCUMENT

Purpose and Audience

The purpose of this manual is to provide the experienced COBOL program
mer with a guide to efficient COBOL usage in the Prime Environment.

Newcomers to Prime will find in Parts 1 and 2 the introduction and guide
they require to apply COBOL in the new environment.

The user familiar with Prime may wish to skim Parts 1 and 2 of this man
ual.

Advanced concepts and reference are geared to all COBOL users.

Organization and Usage

It is envisioned that this manual will be examined from several different
viewpoints. For maximum benefit in any application, the user should be
familiar with its organization.

In this connection, the Table of Contents is a guide not only to content,
but to order as well; while the index will provide the most direct access
to specifics.

The reader should also familiarize himself with the kinds of information
available in the Appendices, since they represent a capsule form of re
peatedly used data. Various versions of tables are here incorporated
into one format, error messages are alphabetically stated, COBOL symbols
are presented in capsule form, as are Reserved Words.

This manual is cross-referenced and contains frequent pointers to other
documentation for in-depth discussion of system features.

This document is organized into four major parts:

1. An overview of Prime's COBOL (Sections 1 through 3).

2. Using the Prime System (Sections 4 through 9).

3. Advanced Concepts (Sections 10-11)

4. Reference (Sections 12-22 and Appendices A-J).

November 1977

SECTION 1 PDR3056

Part 1, An Overview of Prime's COBOL, discusses Prime's system features,
the PRIMOS interactive environment, and Prime's COBOL. As an overview,
this part is meant to introduce the uninitiated user to a time-shared,
multi-user, interactive system, with its potential for COBOL. The ex
perienced user will here find a summary of Revision 14 enhancements to
the COBOL language and Prime system facilities.

Part 2, Using the Prime System, is a tutorial. Its sections will take
a new Prime user through those stages required to successfully create
and execute COBOL programs on a Prime system.

The first concern is system access. System level commands are listed
and summarized in Section 4. The system Editor is then presented as a
means for entering and modifying data in general, and source programs
in particular.

The remainder of Part 2 is organized to reflect the sequence of 'steps
necessary to compile, load, execute and sort COBOL programs. System
utility programs useful in this connection are explained in detail,
with in-line examples and complete command summaries. These are organ
ized into self-contained sections on the Compiler, the Linking Loader,
SEG, and Sort procedures.

When a quick reference rather than a tutorial is wanted, the user will
find capsulized versions of the Compiler and SEG sections repeated in
Part 4.

Part 3, Advanced Concepts, addresses system and time efficient proce
dures. Its audience is both the new and the experienced Prime COBOL
user.

Treatement of COBOL program environments is here expanded, with discus
sion including command files, phantom users, CX mode, and shared pro
cedures.

Management systems are introduced and discussed in relation to COBOL
interface. Those aspects of MIDAS (Multiple Keyed Index Direct Access
System) most commonly utilized in COBOL applications are treated in
detail.

Throughout Part 3, the approach remains tutorial, including many exam
ples. To accomodate the large spectrum of user applications, frequent
reference is made to additional sources of information.

Part 4, Reference, provides syntactical and general COBOL specifications:
it is patterned after the ANSI standards. Its four main subdivisions
are:

Fundamental Concepts of COBOL
Nucleus
Functional Processing Modules
Utilities

REV. 0

PDR3056 INTRODUCTION

Fundamental Concepts of COBOL defines, refines and enhances the Nucleus
and Functional Processing Modules, the Nucleus sets forth the struc
ture and governing rules for COBOL's four divisions: Identification,
Environment, Data, and Procedure. The Functional Processing Modules
include Inter-program Communication, Table Handling, Indexed 1-0, and
Relative 1-0. Utilities is a reference presentation of the Prime COBOL
Compiler and the SEG utility program.

Effective usage of the Reference requires considerable knowledge of
its organization:

In Fundamental Concepts of COBOL, the user will find a generalized pro
gram summary, together with a skeletal component structure for a pro
gram. This is expanded in the example program, SAMPLE, which follows
with its Listing File. This summary is a thumb-nail presentation of
requires and optional program structure, which is expanded throughout
the Nucleus.

The Nucleus presents information related to the Identification, Environ
ment, Data, and Procedure Divisions (Sections 13 through 16 respectively)

Each section begins with a thumb-nail, skeletal component format for
the program division it discusses. This is expanded throughout the
section in the sequence in which it must appear.

COBOL verbs are presented alphabetically in Section 16, the Procedure
Division. A quick verb index precedes this data and appears also in
Appendix D.

At the close of each division section, the uer will find an example of
source coding for that given division. These examples form a functional
program, REF2. This total program view illustrates the interrelation
ship of component parts. The COMPILE, LOAD, CREATK, and EXECUTE se
quences for REF2 are presented immediately following the program example
at the close of Section 16. These, and the compiled Listing File which
accompanies them, form an integrated COBOL picture. They relate both
to program division discussion in Part 4, and to their corresponding
tutorial sections in Part 2.

A VMODE Expanded Listing for this program appears in Appendix J.

Functional Processing Modules are self-contained, often restating con
cepts, data descriptions, and COBOL statement formats, elsewhere de
scribed. The reader will here find all related data in a single loca
tion for maximum utility and efficiency. For example, the READ verb
is presented in the Procedure Division. It is restated in the indexed
1-0 Functional Processing Moduel, together with related data pertinent
to indexed 1-0 processing.

November 1977

SECTION 1 PDR3056

This Version

This is a Preliminary Documentation Release (PDR). It represents a
SECOND draft, providing more complete and accurate information about
the product than previously available, but not in itself complete.

Thus, those sections still incomplete are listed in the Table of
Contents and outlined in place. Such sections will be finalized and
incorporated into a Final Documentation Release (FDR). The FDR will
represent the complete product description up to the stated software
revision number and be produced in typeset format.

PRIME CONVENTIONS

Symbols, abbreviations, special characters and conventions frequently
used in Parts 1, 2, and 3 of this document are defined below.

Terminal Functions:

Character Function

(CR)

\

Carriage return.

Backslash (upper case L) used
as tab character (Editor only).

Delete or erase symbol to delete
one preceding character.

Kill character to delete all
characters in current command
line.

Prime Filename Conventions

Filename

B<-XXXX

L+-XXXX

C+-XXXX

XXXXXX

*XXXXX

M̂ -XXXX

#xxxxx

Function

Binary (object) file.

Listing file.

Command file.

Source file.

SAVED (Executable) file.

Map file.

SEG runfile.

REV. 0

PDR3056 INTRODUCTION

r NOTES:

1. New file partitions accept a maximum of 32 characters for
filename.

Text Conventions:

ALL CAPS

Underlining

An item which must be included verbatim.
Underlines indicate acceptable abbreviations

Indicates user input in examples.

RELATED DOCUMENTS

The following documents include information on the PRIMOS system and
Prime Utility programs. They will be important adjuncts to this
release:

Title

PRIMOS Interactive User Guide

PRIMOS Computer Room User Guide

FORMS Management System (FORMS)

User Guide for the Data base Administrator
Reference Guide for DBMS Schema DDL
COBOL Reference Guide for DBMS
The PMA Programmer's Guide
Reference Guide, Multiple Index
Data Access System (MIDAS)

The New User's Guide to Editor
and Run off

Reference Guide, Software Library
Reference Guide, File Management
System (FMS)

Manual No.

MAN
PTU
PTU
MAN
PTU
PTU
IDR

2602
31
42
2603
32
43
3040

PTU 45

IDR
IDR
IDR
PDR
PDR

PDR

PDR
PDR

3043
3044
3046
3059
3061

3104

3106
3110

November 1977

PDR3056 PRIME COBOL

SECTION 2

PRIME COBOL

FEATURES

Prime COBOL is based upon American National Standard X3.23-1974. Ele
ments of the COBOL language are allocated to twelve different functional
processing "modules".

Each module of the COBOL Standard has two non-null "levels"--level 1
represents a subset of the full set of capabilities and features con
tained in level-2.

In order for a given system to be called COBOL, it must provide at least
level 1 of the Nucleus, Table Handling and Sequential 1-0 modules.

The following summary specifies the content of Prime COBOL with respect
to the Standard.

Module

Nucleus

Sequential 1-0

Relative 1-0

Features Available in Prime COBOL

All of level 1, plus these features of level 2:
Levels 77, 01-30, 88;
Value series or range, level 88 conditions;
AND OR = < > in conditions;
Procedure-names consisting of digits only;
COMPUTE with multiple receiving fields;
PERFORM VARYING one index;
Mnemonic-names for ACCEPT or DISPLAY devices;
Qualification of Names (Procedure Division);
Sign test;
String;
Unstring;

(DAY '•
ACCEPT (TIME ,• .

(DATE)

All of level 1 plus these features of level 2:
RESERVE clause and variable form of BLOCK;
Multiple operands in OPEN § CLOSE, with individual
option per file.

All of level 1 plus:
RESERVE clause;
DYNAMIC access mode (with READ next);
START (with key relations EQUAL, GREATER, or NOT
LESS).

November 1977

SECTION 2

Module

Indexed 1-0

Library

Table Handling

Inter-program
Communication

PDR3056

Features Available in Prime COBOL

All of level 1 plus:
RESERVE clause;
DYNAMIC access (with READ next);
RANDOM access mode with READ by KEY;
START (with key relations EQUAL, GREATER,
NOT LESS).

Level 1

All of level 1 plus:
SEARCH

Level 1

SYSTEM FILES

To utilize COBOL, the following files must be available on the system
in the UFD's specified:

UFD

CMDNCO

SYSOVL

LIBRARY

FILE-NAME

COBOL

C$$DAT
C$$DAR
C$$GEN
C$$FIN
C$$END
C$$64V (*)

COBLIB
COBKID
VCOBLB (*)

*Denotes new files for 64V mode.

REV. 0

PDR3056 PRIME COBOL

r

VCOBLB

The new VCOBLB

C$ADAT

C$ADAY

C$ATIM

C$INSP

C$UNSI/C$UNS1

C$STR1/C$STR2

C$IN

C$OS

c$cs

C$RS

C$XS

c$ws

COI/COR

CSI/CCR

Library contains the following common COBOL subroutines,

= returns current data in format YMMDD

= returns Julian date in format YYDDD

= returns current time in format HHMMSSFF

H = Hour
M = Minutes
S = Seconds
F = Hundreth of seconds

= INSPECT statement

= STRING statement

= STRING statement

= File assignment initialization

= Open sequential file

= Close sequential file

= Read sequential file

= Rewrite sequential file

= Write sequential file

= Open indexed/relative file

= Close indexed/relative file

2 - 3 November 1977

PDR3056 COBOL AND PRIMOS

SECTION 3

COBOL AND PRIMOS

OPERATING SYSTEM MODES

64R Mode, Prime 300, 400, 500

64V Mode, Prime 400, 500

FILE SYSTEM SUMMARY

PROGRAM ENVIRONMENTS

Interactive

Queued Jobs Using Command Files

Phantom Users

CX Mode

Shared Procedures

SYSTEM RESOURCES SUPPORTING COBOL

The portions of SECTION 3 outlined above were incomplete at this
printing.

November 1977

r P A R T II

U S I N G T H E P R I M E S Y S T E M

r

c

PDR3056 SYSTEM ACCESS

&

SECTION 4

SYSTEM ACCESS

r*

<r

ADDRESSING THE SYSTEM

This portion is not available at this printing.

PRIMOS Command Summary

Language, utility, and system interface will require the use of PRIMOS
commands; a comprehensive alphabetic list follows (those preceded by
an * will have the greatest significance for COBOL users):

ADDISK
AMLC
ASRCWD

* ASSIGN
* ATTACH
* AVAIL
BASIC
BASINP

* BINARY
CBASIC
CHAP

* CLOSE
* CMPRES
* CNAME
CNVTMA

* COBOL
* COMINPUT

* COMOIJTPUT
CONFIG
COPY
CPMPC
CPPMPC

* CREATE
CRMPC
CRSER
CX
DATE
DBASIC

* DELAY

* DELETE
* ED
EDB

Starts up physical, disks
Starts up AMLC Line (network command)
Changes control work for I/O virtualization
Obtains exclusive control of a peripheral device
Attaches to UFD or sub-UFD
Gives records available on specified disk
Invokes interpretive-BASIC utility
Loads BASIC program written for another computer system
Opens a file for writing on PRIMOS unit 3 (Obs.) -»f
Invokes compiled BASIC utility
Changes user's job priority and time-slice
Closes named files or file units as specified
Compresses ASCII file
Changes a filename
Converts a memory map to an ASCII file image
Invokes COBOL compiler
Switches command stream from terminal file and
vice-versa

Switches terminal output to file and vice-versa
Specifies system parameters
Copies and verifies one disk to another
Punch cards on parallel interface card punch
Punch cards and print text on parallel interface
card punch

Creates a sub-UFD in the current UFD
Reads cards from the parallel interface card reader
Reads cards from the serial interface card reader
Invokes the sequential phantom job execution utility
Prints system time and date at terminal
Invokes the double-precision arithmetic imperative
. BASIC

'*Specifies delay between outputting lines to user
terminal

Deletes a filename from the UFD
Invokes Prime's text editor
Invokes the binary editor (for library building)

9

November 1977

SECTION 4 PDR3056

1

*

*

*

*

-*^^.*
*
*

*
*
*

••-•*•'

*

*
*
*

*

*
*
*
*
*

*

*

FILVER

FIXRAT

FUTIL
FTN
HILOAD
INPUT
LATE
LBASIC

LISTF
LISTING
LOAD
LOGIN
LOGOUT
LOOK

MACHK
MAGNET
MAGRST
MAGSAV
MAKE
MAXUSR

MCG
MDL

MESSAGE
MTDSK
NUMBER
OPEN

OPRPRI
PASSWD
PHANTOM
PM

PMA
PRERR
PRMPC
PROTECT
PRSER
PSD
PTCPY
PUSS
RESTORE
RESUME
RUNOFF
SAVE

SEG
SETIME
SHARE

Compares two binary files for equivalence and prints
differences

Checks file integrity and performs file directory
housekeeping

Invokes Prime's file manipulation utility •; •
Invokes FORTRAN compiler
Same as LOAD, higher in memory
Opens file for reading on PRIMOS unit 1
Sets time when next command will be accepted
Invokes interpretive BASIC with MAT and PRINT USING
functions

Prints list of entries in current UFD
Open a file for writing on PRIMOS unit ,2
Invokes the Linking Load (R-identity)
Logs the user into the system
Logs the user off the ̂ system
Allows operator to map any user segment to user 1
address space (P400 only)

Puts computer into machine check mode (PRIMOS II only)
Invokes the magtape/disk transfer/translation utility
Transfers files from 9-track tape to disk
Transfers files from disk to 9-track tape
Creates a PRIMOS disk with specified parameters
Sets maximum numbers of users who can be logged into
the system

Translates microcode assembly for ROM simulator
Punches paper tape of specified sections of memory in
self-loading format

Transmits message from user terminal to system console
Transfers data between disk and 7-track tape (Obs.)
Renumbers statements in a BASIC program
Opens a file by name on a specified PRIMOS unit for
specified operations

Allows certain commands to be issued at system console
Sets passwords for current UFD
Spawns a user to execute the specified command file
Prints program start and end addresses, register
contents

Invokes the PMA assembler
Prints error message in ERRVEC
Prints on parallel interface driven line printer
Sets owner/non-owner rights for files and sub-UFDs
Print on serial interface driven line printer
Invokes the Prime Symbolic Debug utility
Duplicates and verifies paper tapes
Compares two ASCII files
Restores a file from disk to user's memory space
Restores a file to user's memory and begins execution
Invokes Prime's text output formatter
Writes memory into a disk runfile with the address

values and register settings
Invokes the segmented-address (V-identity) utility
Sets the system date and time
Restores files into shared segments

• A

W'l

Replacement Sheet.* January 1978

t

SECTION 4

H *

*

*

*

*

^ > *
*
*

*
*
*

»

*

*
*
*

*

*
*
*
*
*

*

*

FILVER

FIXRAT *

FUTIL
FTN
HILOAD
INPUT
LATE
LBASIC

LISTF
LISTING
LOAD
LOGIN
LOGOUT
LOOK

MACHK
MAGNET
MAGRST
MAGSAV
MAKE
MAXUSR

MCG
MDL

MESSAGE
MTDSK
NUMBER
OPEN

OPRPRI
PASSWD
PHANTOM
PM

PMA
PRERR
PRMPC
PROTECT
PRSER
PSD
PTCPY
PUSS
RESTORE
RESUME
RUNOFF
SAVE

SEG
SETIME
SEIARE

PDR3056

Compares two binary files for equivalence and prints
differences

Checks file integrity and performs file directory
housekeeping

Invokes Prime's file manipulation utility i
Invokes FORTRAN compiler
Same as LOAD, higher in memory
Opens file for reading on PRIMOS unit 1
Sets time when next command will be accepted
Invokes interpretive BASIC with MAT and PRINT USING
functions

Prints list of entries in current UFD
Open a file for writing on PRIMOS unit .2
Invokes the Linking Load (R-identity)
Logs the user into the system
Logs the user off the >system
Allows operator to map any user segment to user 1
address space (P400 only)

Puts computer into "machine check mode (PRIMOS II only)
Invokes the magtape/disk transfer/translation utility
Transfers files from 9-track tape to disk
Transfers files from disk to 9-track tape
Creates a PRIMOS disk with specified parameters
Sets maximum numbers of users who can be logged into
the system

Translates microcode assembly for ROM simulator
Punches paper tape of specified sections of memory in
self-loading format

Transmits message from user terminal to system console
Transfers data between disk and 7-track tape (Obs.)
Renumbers statements in a BASIC program
Opens a file by name on a specified PRIMOS unit for
specified operations

Allows certain commands to be issued at system console
Sets passwords for current UFD
Spawns a user to execute the specified command file
Prints program start and end addresses, register
contents

Invokes the PMA assembler
Prints error message in ERRVEC
Prints on parallel interface driven line printer
Sets owner/non-owner rights for files and sub-UFDs
Print on serial interface driven line printer
Invokes the Prime Symbolic Debug utility
Duplicates and verifies paper tapes
Compares two ASCII files
Restores a file from disk to user's memory space
Restores a file to user's memory and begins execution
Invokes Prime's text output formatter
Writes memory into a disk runfile with the address

values and register settings
Invokes the segmented-address (V-identity) utility
Sets the system date and time
Restores files into shared segments

&

~rst*

Replacement Sheet 4 - 2 January 1978

PDR3056 SYSTEM ACCESS

<*

SECTION 4

SYSTEM ACCESS

T

r

<r

ADDRESSING TIE SYSTEM

This portion is not available at this printing.

PRIMPS Command Summary

Language, utility, and system interface will require the use of PRIMOS
commands; a comprehensive alphabetic list follows (those preceded by
an * will have the greatest significance for COBOL users):

Starts up physical disks
Starts up AMLC Line (network command)
Changes control work for I/O visualization
Obtains exclusive control of a peripheral device
Attaches to UFD or sub-UFD
Gives records available on specified disk
Invokes interpretivevBASIC utility
Loads BASIC program Written for another computer system
Opens a file for writing on PRIMOS unit 3 (Obs.) **r
Invokes compiled BASIC utility
Changes user's job priority and time-slice
Closes named files or file units as specified
Compresses ASCII file
Changes a filename
Converts a memory map to an ASCII file image
Invokes COBOL compiler
Switches command stream from terminal file and

ADDISK
AMLC
ASRCWD

* ASSIGN
* ATTACH
* AVAIL
BASIC
BASINP

* BINARY
CBASIC
CHAP

* CLOSE
* CMPRES
* CNAME
CNVTMA

* COBOL
* COMINPUT

* COMOlffPUT
CONFIG
COPY
CPMPC
CPPMPC

* CREATE
CRMPC
CRSER

* CX
* DATE
DBASIC

* DELAY

* DELETE
* ED
EDB

/" *

vice-versa
Switches terminal output to file and vice-versa
Specifies system parameters
Copies and verifies one disk to another
Punch cards on parallel interface card punch
Punch cards and print text on parallel interface
card punch

Creates a sub-UFD in the current UFD
Reads, cards from the parallel interface card reader
Reads cards from the serial interface card reader
Invokes the sequential phantom job execution utility
Prints system time and date at terminal
Invokes the double-precis ion arithmetic imperative
./BASIC
•'Specifies delay between outputting lines to user

terminal
Deletes a filename from the UFD
Invokes Prime's text editor
Invokes the binary editor (for library building)

November 1977

^

PDR3056 SYSTEM ACCESS

After all I/O operations are completed, exclusive use is relinquished by
the command:

UNASSIGN device

where device is the same mnemonic used in the ASSIGN command.

Reading Punched Cards: Assign use of the parallel interface card reader
with the ASSIGN command:

AS CR -WAIT

To read cards from the card reader, load the card deck into the device
and enter the command:

CRMPC treename

where treename is the name of the file into which the card images are to
be loaded.

Source deck header control cards are set up as follows:

Source deck Columns 1 and 2 of
representation deck header card

BCD $6
EBCDIC $9
ASCII no header card

Reading continues until a card with $E in columns 1 and 2 is encountered
(end of deck) ; control returns to PRIMOS and the file is closed. If the
cards are exhausted (or the reader is halted by the user) , control
returns to PRIMOS but the file is not closed.

If more cards are to be read into the file at this point, the reader
should be realoaded; reading is resumed by the START command given at the
terminal: START.

The format of the command to close the file is:

CLOSE (f^161131116

] ALL

To close all files and units, the CLOSE command should be given in the
form:

CLOSE ALL

Replacement Sheet 4 - 5 January 1978

SECTION 4 PDR3056

Example of a card reading session:

OK, AS CR -WAIT
OK, CRMPC old-program-1
OK, UN CR
OK,

If a serial interface card reader is used, the process is similar with
slightly different reader commands. Note that CARDR may be abbreviated
as CAR.

OK, AS CARDR -WAIT
OK, CRSER old-program-2
OK, UN CAR
OK

1

Reading Magnetic Tape / The MAGNET Utility: Assign use of the magnetic
tape drive by:

AS Mtx -WAIT

where x is the tape drive unit number: 0,1, 7.

r-fount the tape on the selected drive unit and read the tape with PRIMOS'
MAGNET utility:

OK, MAGNET
GO

MAGNET

OPTION:

MTU# =

where:

14.0 19-

: READ

unit

-MAY

number

-77

[/tracks]

unit-number is the number of the magnetic tape drive unit
which was previously assigned and

tracks is either 7 or 9; if this parameter is omitted,
9-track tape is assumed.

Replacement Sheet January 1978

PDR3056 SYSTEM ACCESS

MAGNET then asks a series of questions about the tape format (user
responses are underlined):

Pronpt

MTFILE# =

Response

tape-file-number

LOGICAL RECORD SIZE = number

BLOCKING FACTOR = blocking factor

/

ASCII, BCD, BINARY, OR EBCDIC?

ASCII

EBCDIC

BCD

BINARY

\

Remarks

This is the number on the
tape. A positive integer
causes the tape to be re
wound and then positioned
to the file number; a 0
causes no repositioning
of the tape.

This is the number of
bytes/line image; normally
this is 80 for COBOL
source program.

Blocking-factor is the
number of logical records
per tape record.

indicates that no transla
tion is to occur between
tape and disk. The data is
written to the disk file in
ASCII format (using 0$ADO7)

indicates that the data on
the tape is to be transla
ted f ran EBCDIC to ASCII
before being written to
the disk file using 0$ADO7

specifies that the data is
to be translated from BCD
(6-bit) to ASCII before
being written to the disk
file with 0$ADO7. This
option is only meaningful
when used with a 7-track
tape. Note that no 6-6-4
unpacking is done by Magnet
when this option is specified

indicates that the data is
to be written verbatim to a
binary disk file using 0$BDO7.
The record size is the
specified logical record
size. No translation occurs.

Replacement Sheet 4 - 7 January 1978

SECTION 4 PDR3056

Prompt Response

FULL OR PARTIAL RECORD TRANSLATION? | FULL
PARTIAL

OUTPUT FILENAME:

OK TO DELETE OLD filename?

filename

CYES\

I™ J

Remarks

The question is asked only
for BCD or EBCDIC
representations. PARTIAL
allows specified bytes in the
record to be transferred to
disk without translation to
ASCII. This is useful when
transferring data files.
Most source programs will be
transferred with the FULL
option. •

This is the name of the file
in the UFD into which the
magnetic tape is read.

This question will be
asked only if the filename
specified already exists
in a UFD. A YES will
cause the transfer to
begin.

Upon completion of the dialogue, the following message will be printed:

DONE, tape-records RECORDS READ, disk-records DISK RECORDS OUTPUT
OK,

Use of the tape drive unit should then be relinquished by the command:

UN MTx

3

Reading Punched Paper Tape: Source programs punched on paper tape in ASCII
representation can be read onto a disk file with the Editor utility.

OK, AS PTR -WAIT
OK, ED
GO
INPUT
(CR)
EDIT
INPUT (PTR)
EDIT
FILE filename
OK, UN PTR

assign tape reader
invoke Editor

switch to EDIT mode

input from tape reader; tape is being read

file inout under filename

Replacement Sheet January 1978

f

« .

PDR3056 SYSTEM ACCESS

The EDITOR/Entering and Modifying Programs

Programs are normally entered into the computer using Prime's Text Editor
(ED). This editor is a line-oriented text processor whose line pointer
is always located at the last line processed (whether the processing is
printing, locating, moving pointer, etc). The Editor operates in two
modes, INPUT and EDIT.

Using the Editor: When creating a new file, the Editor is invoked by the
command:

ED

which places the Editor in the INPUT mode. To modify an existing file,
use the expanded command format:

ED filename

This places the Editor in the EDIT mode.

A CARRIAGE RETURN with no preceding characters on that line switches the
Editor from one mode to another.

Input Mode: The INPUT mode is used when entering text information into
a file (e.g., creating a program). The word INPUT is displayed at the
user's terminal to indicate the Editor has entered that mode. The RETURN
key terminates the current line and prepares the Editor to receive a new
line. Tabulation may be achieved by using the backslash (\)
character. Each backslash represents the first, second, etc. tab
setting; the default tabs are at positions 6, 15, and 30. These settings
may be overridden, and up to 8 tab settings may be specified by the user
with the TABSET command (described later) . A RETURN with no text
preceding it puts the Editor into EDIT mode.

Edit Mode: The EDIT mode is used when the contents of the file are to
be modified. More than 50 commands are available, although users will
find that a small subset of these will suffice for most purposes.
Commands are listed and described later in this section.

In EDIT mode, the Editor maintains an internal line pointer at the current
line (the last line processed). Commands such as TOP, BOTTOM, FIND, and
LOCATE, move this pointer. WHERE prints out the current line number?
POINT moves the pointer to a specified line number. The MODE NUMBER
command causes the line number to be printed out whenever a line of text
is printed. All commands for location and modification begin processing
with the current line.

A CARRIAGE RETURN without any preceding characters on that line puts the
Editor into INPUT mode.

Replacement Sheet 4 - 9 January 1978

SECTION 4 PDR3056

Special Characters: Unless modified at the user's installation, the " ^ U
Editor's erase and kill symbols are those of PRIMOS. That is, the V
Editor's default erase character is the double-quote ("), and the
default kill character is the question-mark (?) . For each " typed, a
character is erased (from right to left). The entire current line may
be deleted by typing the kill character. A line followed by a ? is
null, and a RETURN at that point will switch the Editor into the other
mode.

The semicolon character (;) is interpreted as a carriage return by the
Editor in INPUT mode. While this places restrictions on entering semi
colons as part of a file, it does provide a 'brief format for inputting
multiple short entries or blank lines.

EXAMPLE:

INPUT rf ,
; TEST-FILE;* *~^

will become:

*

* TEST-FILE
*

A more detailed discussion of special characters and how to manipulate "^Hl
them is provided in the New User's Guide to EDITOR and RUNOFF, PDR 3104. -«fr

Saving Files: Orderly termination of an Editor session is done from EDIT
mode. The command:

FILE filename

writes the current version of the edited file to the disk under the
name filename. The specified file will be created if it did not ^\
previously exist, or overwritten if it did exist. If an existing file is fUj.
being modified, the command should be given as: *'!

FILE

This writes the new version to the disk under the old filename. After
execution of the filing command, control is returned to PRIMOS.

Useful Techniques: The following are highlights of some Prime Editor
techniques which will be of particular interest to the COBOL user:

• Tab Settings: When entering source code, much time can be saved using
the TABSET command. In INPUT mode, each backslash character (\) is
interpreted as one tab setting; the default values are positions
6, 15, and 30. Tabs may be set to whatever values each programmer
finds useful. ^ ^

Replacement Sheet 4 - 1 0 January 1978

PDR3056 SYSTEM ACCESS

Column Display: Entering source code and other data is also facili
tated by the Editor's column display feature. A banner of column
numbers can be displayed across the top of the terminal screen
providing alignment guides. The command MODE COLUMN, given in Edit
mode, causes the column header display to be printed each time Input
mode is entered during an Editor session.

Moving Lines of Code: Several Editor commands enable the transfer of
coded lines to and from Editor work files.

The LOAD command inserts (loads) a copy of filename into the Editor's
work file below the current line, repositioning the pointer just
below the end of the LOADed text.

The UNLOAD command copies (unloads) the specified number of lines in
the Editor work file into filename.

The DUNLOAD command copies (unloads) the specified lines in the work
file into filename, and then deletes those lines from the work file.

Finding A Line By Statement Label: The FIND command may be used to
locate a statement label in a COBOL program.

Modifying A Line Without Changing Character Positions: The MODIFY
command is used when a line must be modified but the absolute column
alignment must remain the same.

Sample Editing Session 1:

See the list following these examples for an explanation of the commands.

OK, ED

GO
INPUT
(CR)
EDIT
C'MODE COLUMN
(CR)
INPUT

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123456789

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST2. Source coding is keyed in,
INSTALLATION. PRIME. aligned by column.

\ *

\ *

PROCEDURE DIVISION.

The first tab default is
position 6. A space after the
backslash character positions
the asterisk in the continuation
column 7.

Replacement Sheet 4 - 1 1 January 1978

SECTION 4 PDR3056

«tP
OPEN-FILES.

OPEN INPUT INPUT-FILE.

(CR)

EDIT

P20

The PRINT command in EDIT
mode displays entered source
statements.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST2.
INSTALLATION. PRIME.

PROCEDURE DIVISION.

OPEN-FILES.
OPEN INPUT INPUT-FILE.

Urn
(CR)

INPUT
1 2 3 4 5 6 7

123456789012345678901234567890123456789012345678901234567890123456789012345678
DONE.

CLOSE INPUT-FILE.
STOP RUN.

Each time INPUT is invoked,
there is an automatic column
number display. This
convention may be used at
terminal scrolling (when the

(CR) column display scrolls or rolls
off the screen).

EDIT

FILE TEST2 The FILE command writes the
contents of the edited file to
the filename specified (in
this case, TEST2). The FILE
command also causes a return
from the Editor to PRIMOS.

OK,

Replacement Sheet 4 - 1 2 January 1978

PDR3056 SYSTEM ACCESS

c. Sample Editing Session 2

OK, ED
GO
INPUT
(CR)
EDIT
TABSET 8 17
(CR)
INPUT

*
* THIS IS A RECORD STREAM FOR
*\A COBOL PROGRAM
*\\JJSING FORMS

Set tabs

Begin e n t e r i n g d a t a

Use backslash character for
tabulation

RECORD STREAM
*\MACRO DEFF"INITIONS
FI\DEF\FIELD
V\DEF\VALLIDATE

Erase errors

\END\STREAM
t I t

(CR)
EDIT
T

Semicolons enable multiple
entries with a single line

Position pointer at beginning
of file.

FIND FI
FI DEF
MODIFY/FI/F
F DEF

FIND V
V DEF
C/LL/L
V DEF

T
P30
.NULL.

FIELD

FIELD

VALLIDATE

VALIDATE

Locate statement to be modified

Modification complete;
Absolute alignment remains
intact

Change is complete; relative
alignment remains intact.

Print corrected file (30 lines).

* THIS IS A RECORD STREAM FOR
* A COBOL PROGRAM
* USING FORMS
*

r
RECORD STREAM

MACRO DEFINITIONS
F DEF FIELD

Replacement Sheet 4 - 1 3 January 1978

file:///END/STREAM

SECTION 4 PDR3056

V DEF VALIDATE

END STREAM

FILE FORMSTREAM
OK,

£w

Replacenvent Sheet 4 - 14 January 1978

PDR3056 SYSTEM ACCESS

r Editor Command Sumnary

The following is an alphabetic list of each Editor carmand and its
function. Acceptable ccmtnand abbreviations are underlined. Especially
useful ccntnands are indicated with a bullet (o) . For a detailed
description of all commands, see the Editor Reference Section of THE
NEW USER'S GUIDE TO EDITOR AND RUNOFF, PDR 3104.

NOTE; The string parameter in a carmand is any series of ASCII
characters including leading, trailing, or embedded blanks.

Command Function

K
APPEND string

BOTTOM

Appends string to the end
of the current line.

Moves the pointer beyond
the last line of the file.

BRIEF Speeds editing by suppressing
the (default) verification
responses to certain Editor
commands.

CHANGE/string-l/string-2/[G] [n] Replaces string-1 with
string-2 for n lines. If
G is omitted, only the first
occurrence of string-1
on each line is changed;
if G is present, all
occurrences on n lines are
changed.

DELETE [n] Deletes n lines, including
the current line (default
n=l) .

DELETE TO string Deletes all lines up to but
not including line containing
string.

DUNLOAD filename [n] Deletes n_ lines and writes
them into filename,
(default n=l.)

DUNLOAD filename TO string Same as DELETE...TO, but
writes deleted lines into
filename.

Replacement Sheet 15 January 1978

SECTION 4 PDR3056

Command

ERASE character

FILE filename

FIND string

• FIND(n) string

O40DIFY

f(ASR)l
INPUT < (PTR) >

[(TTY)j

INSERT string

KILL character

LINESZ n

LOAD filename

LOCATE string

• MODE COLUMN

MODE COUNT start increment width

Function

Resets current erase
character to character.

Writes the contents of the
current file into filename
and exits to PRLMOS.

Moves the pointer down to the
next line beginning with
string.

Moves the pointer down to next
line with string beginning in
column n.

Allows the user to enter a
string of subcommands which
modify characters within a
line.

Reads text from the specified
input device: ASR (Teletype
paper tape reader), PTR
high-speed paper tape reader)
or TTY (terminal). Default
is TTY.

Inserts string after current
line.

Sets kill character to
character.

Changes maximum line length.

Loads filename into text
following the current line.

Moves pointer forward to the
next line containing string,
which may contain leading
and trailing blanks.

Displays column numbers
whenever INPUT mode is
entered. (The command is
given in EDIT mode.)

PRINT
BLANK
SUPPRESS

Turns on the automatic
incremented counter.

i * w

3

^

Replacement Sheet 4 - 1 6 January 1978

PDR3056 SYSTEM ACCESS

r Command

MODE NCOLUMN

MODE NCOUNT

Function

Turns off the column display
(default). (The command is
given in EDIT mode.)

Disables the MODE COUNT
function.

MODE NUMBER

MODE NNUMBER

(Case Modes)

C

Displays line numbers in
front of printed line.

Turns off the line number
display (default).

Case-flagging is done by
preceding each new case with
either tU (for Upper-Case) or
tli (for Lower-Case) . PRUPPER
and PRLOWER are intended for
use on Upper-Case-Only
Terminals.

MODE PRALL

MODE ,

PRUPPER

PRLOWER

Prints letters without case-
flagging (default) .

Accepts/prints case-flagged
Upper-Case letters. Each
line of input/output begins
implicitly flagged as Upper-Case.

Accepts/prints case-flagged
Upper-Case letters. Each line
of input/output begins
implicitly flagged as Lower-
Case.

MODE PROMPT Prints prompt characters for
INPUT & EDIT modes.

MODE NPROMPT

• MODIFY/string-l/string-2/ [n] [G]

MOVE buffer-1 f buf fer-2*\
^string J

Inhibits printing of INPUT and
EDIT prompt characters (default).

Superimposes string-2 onto
string-1 for n lines. If G is
omitted, only the first
occurrence of string-1 on each
line is modified, otherwise all
occurrences of string-1 are
modified.

Move string or contents of
buffer-2 into buffer-1.

Replacement Sheet 17 January 1978

SECTION 4 PDR3056

Command

NEXT [n]

• NFIND string

NFIND(n) string

OVERLAY string

PAUSE

POINT line-number

PRINT n

PSYMBOL

PTABSET t a b - 1 . . . t a b - 8

s= {§§} -
QUIT

RETYPE string

Function

Moves the pointer n lines
forward or backward
(default n=l).

Moves the pointer down to next
line NOT beginning with
string.

Moves pointer to next line in
which string does not start in
column n.

Superimposes string on current
line. Use tabs to start in
middle of line. An i forces a
space in its corresponding
column.

Returns to operating system
without changing the Editor
state. Type START to continue.

Relocates the pointer to
line-number.

Prints the current line or n
lines beginning with the
current line.

Prints a list of current
symbol characters and their
function.

Provides for a setup of tabs
on devices that have physical
tab stops.

Punches n lines on high- or
low-speed paper-tape punch.

Returns control to PPJDMDS.

The current line is replaced
by string.

%

Replacement Sheet 4 - 1 8 January 1978

-T**-*"

PDR3056 SYSTEM ACCESS

Command Function

,*

tj

SYMBOL name character

• TABSET tab-l...tab-8

• TOP

• UNLOAD filename n

UNLOAD filename TO string

• VERIFY

• WHERE

XEQ buffer

n

Changes a
character.

symbol name to
. Current default

values are:

Name

KILL
ERASE
WILD
BLANK
TAB
ESCAPE
SEMICO
CPROMPT
DPROMPT

Default Characters

?
ii

j

\
t
/
$
&

Sets up to eight logical
tabstops to be invoked by the
tab symbol.

Moves the pointer one line
before the first line of text.

Copies n lines into filename.

Unloads lines from current
file into filename until string
is found.

Displays each line after
completion of certain commands,
(default.)

Prints the current line number.

Executes the contents of
buffer as a command line.
See MOVE.

Repeat symbol. Causes preceding
command to be repeated n times
as in:

F /;D;*10

which deletes the next ten lines
beginning with /. If n is
omitted, the command repeats
until the bottom of file is
reached.

Replacement Sheet 4 - 1 9 January 1978

SECTION 4 PDR3056

Listing Programs

Terminal Listing: Programs may be listed at the terminal by the PRIMDS V
command:

SLIST treename

where treename is the name of the file to be listed. Upon completion
of the listing, control is returned to PRIMDS.

Line Printer Listing; To obtain a copy of a source file on the system
line printer, enter the command:

SPOOL filename [-option-1...-option-n]

which creates a copy of the user's file filename in the line printer
spool queue. The options are mnemonics specifying printer options.
The most useful options for COBOL programmers are: «|'

O
-LNUM Prefixes a line number to the left of the file

contents; these numbers are enclosed in parentheses.

-DEFER time Defers printing of the file until the specified time.
The time may be entered in 24-hour format (13:05) or
12-hour format (9:25 PM).

After a file has been spooled; the system returns the message: ^^y

YOUR SPOOL FILE IS PRTxxx

where xxx is a 3-digit number identifying the file on the spool queue.
If a file has been spooled in error, it may be removed from the spool
queue by the command:

SPOOL -CANCEL PRTxxx

where xxx is the identifying number of the spooled file.

The contents of the spool queue may be examined by the command:

SPOOL -LIST

A complete description of the SPOOL COMMAND with all its options will be
found in the documentation on the PRLMQS system.

Renaming and Deleting Files

Renaming: Files may be renamed with the PRIMOS-level command:

CNAME oldname newname

where oldname is the current name of the file and newname is the desired
new name of the file. The user must have owner status in the UFD in order
to use this command.

Replacement Sheet 4 - 20 Janiar^ 1978

fi^k

r.
PDR3056 SYSTEM ACCESS

Deleting: Files may be deleted with the PRIMDS-level ccmnand:

DELETE filename

where filename is the name of the file to be deleted; the user must have
owner status in order to use this command.

NOTE: You cannot use the DELETE cotmand to delete a UFD, subUFD, or
segmented runfile (see Section 7).

r

Replacement Sheet 4 - 2 1 January 1978

PDR3056 COMPILING A SOURCE PROGRAM

SECTION 5

COMPILING A SOURCE PROGRAM

INTRODUCTION

There is one COBOL compiler for all Prime computers and PRIMOS levels.

Source programs must meet the requirements of Prime's COBOL as specified
in this manual.

Object code generated by the compiler in 64R mode is in a format suitable
for loading by Prime's Linking Loader (LOAD) (see Section 6). The COBOL
compiler can also generate object code in the segmented-addressing (64V)
mode suitable for processing by Prime's segmented-addressing loader (SEG)
utility on Prime 400 (or higher) computers.

USING THE COMPILER

The COBOL compiler is invoked by the COBOL command to PRIMOS:

COBOL Treename [-parameter-1 -parameter-2 ... -parameter-n]

or

COBOL [-parameter-1 ...] -I treename [... -parameter-n]

where treename is the treename of the COBOL source program file

Parameter-1, etc. are the mnemonics for the options controlling
compiler functions such as I/O device specifi
cation, listings, and others.

EXAMPLE:

COBOL MYPROG -64V -L PRGLST

or its equivalent

COBOL -64V -I MYPROG -L PRGLST

The mnemonics, e.g., -64V, are explained in COMPILER FUNCTIONS of this
section.

All mnemonic parameters must be preceded by a hyphen (-). The name of
the source program file must be specified either as the first expression
following the command COBOL, or as -I treename, but not both.

5 - 1 November 1977

SECTION 5 PDR3056

End of Compilation Message

After the compiler has done a pass at the specified input file, and gen
erated code and listing output to the devices specified by the mnemonic
parameters, it prints a message at the user's terminal. The message for
mats are:

64R mode

xxxx ERRORS yyyy WARNINGS (VER 0 4)

64V mode

xxxx ERRORS yyyy WARNINGS P40Q/500 COBOL VER 14.0 <PROGRAM>

where xxxx is the number of errors encountered
during compilation

yyyy is the number of warnings

PROGRAM is the name of the program (ID)
compiled.

An error is a mistake in syntax, an omission or the like which makes exe
cution of the program impossible,

A warning occurs when a statement is encountered which, although legal,
may cause unexpected and/or undesirable results.

After compilation, control returns to PRIMOS.

Compiler Error Messages

The general format of the error message is:

n:message I]

where n is the line reference number

message is the standard COBOL compiler error
message, A complete list is given in
the Error Reference Section, Appendix
G.

[] when stated, this is a variable describ
ing the problem,

EXAMPLE:

112:UNRESOLVED PROCEDURE NAME; STATEMENT DELETED, [READ-PAYROLL]

An in-line error message takes the format:

** SYNTAX ERROR ** variable - in-line-message

REV. 0

PDR3056 COMPILING A SOURCE PROGRAM

Compiler Warning Messages

The general format of the message is:

line#:/w/message.

where line# is the line reference number
/w/ indicates WARNING
message is the standard COBOL compiler warning message.

A complete list is given in the Error Reference
Section, Appendix G.

EXAMPLE:

150:/w/MOVE IS DONE WITHOUT CONVERSION.

Program Statistics (64V Mode Only)

When programs are compiled in 64V mode, program statistics are appended
to the listing. These statistics relate to storage allocations. They
take the form:

EXECUTABLE CODE SIZE: (in words)

CONSTANT POOL SIZE: (in words)

TOTAL PURE PROCEDURE SIZE: (in words)

WORKING-STORAGE SIZE: (in bytes)

TOTAL LINKFRAME SIZE: (in words)

STACK SIZE: (in words)

The trace mode status is given by (on or off).

TRACE MODE:

The number of arguments expected is given by:

xxx ARGUMENTS EXPECTED.

where xxx is the number of arguments expected.
If xxx=0, then the message is:

NO ARGUMENTS EXPECTED.

The source program length is given by:

yyy SOURCE LINES

where yyyy is the number of lines in the source
program.

November 1977

SECTION 5 PDR3056

COMPILER FUNCTIONS

The compiler functions enabled by the mnemonic parameters fall into three
groups:

• Specify Input/Output Devices

BINARY
INPUT
LISTING

• Memory Mode

64R
64V

• Enable Expanded Listings

EXPLIST
NOEXPLIST

The defaults listed in this sections are those supplied by PRIME. The
system manager may change these at any particular installation. The pro
grammer should check with the system manager at this installation to de
termine if defaults have been changed and, if so, which parameters are
the new defaults.

Specify Input/Output Devices

The parameters below allow the user to inform the compiler of the input
source filename and to specify the listing and binary object files.

-INPUT Define input file/device (example -I TEST),

-I_ treename The source program file is treename.

-BINARY To override default, define binary (object
file device,

-B treename The binary file will be created with the
treename specified (example: -B OUTPUT>TEST,
where the binary file is created on the UFD
OUTPUT under the filename TEST).

-B NO No binary file will be created; only a syn
tax check will occur.

-B YES The binary file is created with the default
name B*-filename, where filename is the name
of the source program file in the UFD in
which the source program file resides. The
binary file, however, is created in the UFD
to which the user is attached when invoking
the compiler.

REV. 0

PDR3056 COMPILING A SOURCE PROGRAM

NOTE: If the BINARY parameter is not included in the command line, it
is equivalent to -B YES.

-LISTING To override default, define listing file.

-L treename The listing file will be created with the
treename specified (example: -L ELM>LTEST).

-L NO No listing file will be created. At later
stages in program development or when minor
modifications are made to programs, it may
not be considered necessary to get a source
program listing.

-L YES The listing file is created with the default
name L<-filename, where filename is the name
of the source program file in the UFD in which
the source program file resides. The listing
file, however, is created in the UFD to which
the user is attached when invoking the compiler.

-L TTY The listing is printed at the user's terminal.

-L SPOOL The listing file is spooled directly to the
line printer.

NOTE: If the LISTING parameter is not included in the command line, it is
equivalent to -L YES.

Memory Mode

-64R Generates relative-addressed code suitable
for loading with Prime's Linking Loader for
the Prime 300, 400, or 500.

-64V Generates segmented-addressed code suitable
for loading with SEG*s loader. This mode
should be used for programs exceeding 128K
words, and/or for programs intended to be
loaded as shared procedure. Code is suitable
for execution on a Prime 400 or 500.

Listings

There are two forms of listing; regular and expanded.

The regular listing consists of source code with line numbers appended for
reference purposes. This may be obtained in both 64R and 64V mode by the
mnemonic parameter -NOEXPLIST,

November 1977

SECTION 5 PDR3056

-NOEXPLIST Suppress generation of the expanded listing.
This is the normal default.

The expanded listing is a combination of a regular listing and machine-
generated code. The expanded listing is only valid for compilation in
64V mode; it may be obtained by the mnemonic parameter -EXPLIST.

-EXPLIST Generates an expanded listing at the end of
the listing file. User defined names are
NOT used, machine-generated labels are placed
in the listing. The label format is:

<TYPE>$HHHH[+N Character Offset]

HHHH = is the HEXADECIMAL IDENTIFIER

TYPE:

Label types fall into the following category:

A = Paragraph or section
B H Alter or perform indirect word
C = Perform count variable
D => Decimal constant
E =* Picture string (const)
F = Character string (const)
G = Generate label for branch instruction
H = Passed parameter
S R Generate label - any usage allowed
Y = File control block
Z = File buffer

Other labels used:

SB% ~ Stack base relative * used for
temporary storage

XB% = Temporary base relative - used
linkage section address

WRKST$ - Working storage
WSEXT$ H Working storage extension, etc,

under indexes, tallying and work
area as needed by the compiler,

FOR EXAMPLE:

003233: 001310 EAFA 1,Z$0027+72C
003234:001000,000725L

Says, at relative location '3233 in the proce
dure area, EAFA. 1, file buffer (ID»$0027 with
a +72 character offset. Note that the word
offset is '725 in the link frame.

REV. 0

PDR3056 COMPILING A SOURCE PROGRAM

f ^ In order to utilize this expanded listing, a knowledge of PMA is
necessary (see: PDR3059, PMA User Guide).

A complete list of all the compiler mnemonic parameters with more
detailed comments on the consequences of their usage will be found
in the reference section 21.

November 1977

SECTION 6 PDR3056

Desectorization

The loader performs a function during loading called desectorization.
The need for this function arises because one-word memory reference
instructions cannot directly reference all of memory. The loader com
pensates for this by generating a pointer to the operand in a base
area and then modifies the instruction to reference through the pointer.

The pointer default base area is from memory location '200 to '777.
For many programs, this area is sufficient. However, for larger pro
grams this area might be inadequate. The loader has a number of commands
to enlarge the default base area to create local base areas (SETBASE
and AUTOMATIC).

The base area below location '1000 can be used to desectorize any in
struction, no matter what its location. Local base areas (above location
'1000) can be used only to desectorize instructions in a window around
the local base area. The window extends approximately '400 locations
above and below the base area. (See Figure 6-1.)

The loader uses local base areas when possible in preference to a base
area below location '1000. The location in base areas used by the loader
is not available for any other use during program loading or execution.

Initial location of *PBRK
Base Area

Code and
Length
Data

Base Area
+ Location of *PBRK at end of load

«- Location of *PBRK for start of next load

Figure 6-1. Base Area Orientation

REV. 0

SECTION 4 PDR3056

CREATING AND ENTERING SOURCE PROGRAMS

/>

Entry Fran Other Media

Existing source programs resident on punched cards, magnetic tape, or
punched paper tape can easily be read onto disk files using PRIMOS-level
utilities. In addition, the punched card and magnetic tape transfer
utilities will translate from BCD or EBCDIC representation into ASCII
representation saving considerable time and effort.

Subroutines and other installation-dependent operations may be altered
to conform to PRIMOS using the Editor (described later in this section) .

The general order of operations for input from a peripheral device is:

1. Obtain exclusive use of the device (Assigning at the system
level).

2. Transfer programs with appropriate utility.

3. Release device to other users (Unassigning at the system
level).

over that peripheral device. The PRIMOS-level ASSIGN command is given ^fcj
Assigning A Device: Assigning a device gives the user exclusive control
over that peripher
from the terminal:

ASSIGN device [-WAIT]

where device is a mnemonic for the appropriate peripheral:

CARDR Parallel Serial Card Reader
CR Card Reader
MTn Magnetic Tape Unit n ; "*̂
PTR Paper Tape Reader *3|||

\<
and -WAIT is an optional parameter. If included, it queues the ASSIGN
command if the device is already in use. The assignment request remains
in the queue until the device becomes available or the user types the
CTRL/P or BREAK key at the terminal; both occurrences return the user to
PRIMOS. If the requested device is not available and the -WAIT
parameter has not been included, the error message:

DEVICE IN USE

will be printed at the terminal.

Replacement Sheet /• - 4 January 1978

PDR3056 SYSTEM ACCESS

W ^

SHUTDN
* SIZE

* S L I S T

* SCSRr

* SPOOL
* START
STARTUP

* STATUS
SVCSW

* TA
TAP
TERM

* TIME

TRAMLC
* UNASSIGN
UDOS64
UPCASE

* USERS
USRASR

* VPSD
VPSD16
VRTSSW

Shuts down the system in an orderly manner
Gives size of file
Prints contents of file to user's terminal
Sorts an ASCII file
Spools output files to line printer
Sets registers and keys and begins program execution
Starts the system
Prints status of specified system parameters
Controls SVC instruction handling in virtual memory
environment (PRIMOS III only)

Attaches to UFD with treename specified as in FUTIL
Invokes octal mode debugging routine
Sets/Displays terminal kill & erase .characters,
sets duplex

Prints connect time, compute time, and disk I/O
time at terminal

Transmits file over assigned AMLC line
Relinquishes control of a peripheral device
Runs PRIMOS II under PRIMOS IV
Reformats files by changing lower-case letters to
upper-case

Prints number of users currently logged in
Allows system console to act as user terminal
Invokes Debugging utility for V-identity
Used when the program is so large that it overlays VPSD.
Sets virtual sense switches

y

For a complete treatment of these commands, see the PRIMOS Interactive
User Guide, MAN2602.

Replacement Sheet 4 - 3 January 1978

PDR3056 LOADING AND LINKING

SECTION 6

LOADING AND LINKING

INTRODUCTION

The Prime Linking Loader utility (LOAD) operates on code produced by the
COBOL compiler in the 64R mode; code produced in the 64V (segmented
addressing) mode must be processed by the SEG utility (Section 7).

The Linking Loader combines into an executable program a number of program
units or subroutines which have been independently compiled. Some of the
subroutines may have been held in a library; the Linking Loader provides
the facility for incorporation of any library subroutines which have been
referenced in the main program, as well as resolving the cross-reference
between them.

Prime's Linking Loader offers the following features:

• The loader is capable of loading code anywhere within the 64K in
which it resides, except on top of itself or in its symbol table.

• The location of COMMON is moveable by a keyboard command.
(COMMON)

• Partial or full load maps can be displayed on the user terminal
or written to a disk file. (MAP)

• An indefinite number of base areas can be specified; the loader
automatically uses the first available area which can be reached,
in preference to the sector 0 linkage area. (AUTOMATIC)

• The user can specify the instruction execution hardware avail
able in the CPU on which the loaded program will execute. This
is coordinated with the UII object blocks in load modules so
that the proper UII library routines will load automatically.
(HARDWARE) (UII - Unimplemented Instruction Interrupt)

• The user can execute the program from the keyboard in the loader
without having to return to the PRIMOS command level. (EXECUTE)

November 1977

SECTION 6 PDR3056

Desectorization

The loader performs a function during loading called desectorization.
The need for this function arises because one-word memory reference
instructions cannot directly reference all of memory. The loader com
pensates for this by generating a pointer to the operand in a base
area and then modifies the instruction to reference through the pointer.

The pointer default base area is from memory location '200 to '777.
For many programs, this area is sufficient. However, for larger pro
grams this area might be inadequate. The loader has a number of commands
to enlarge the default base area to create local base areas (SETBASE
and AUTOMATIC).

The base area below location '1000 can be used to desectorize any in
struction, no matter what its location. Local base areas (above location
'1000) can be used only to desectorize instructions in a window around
the local base area. The window extends approximately '400 locations
above and below the base area. (See Figure 6-1.)

The loader uses local base areas when possible in preference to a base
area below location '1000. The location in base areas used by the loader
is not available for any other use during program loading or execution.

Initial location of *PBRK
Base Area

i- •

Code and
Length
Data

(- .
Base Area

i .

+- Location of *PBRK at end of load

•*- Location of *PBRK for start of next load

Figure 6-1. Base Area Orientation

REV. 0

<*•-
r*

PDR3056 LOADING AND LINKING

Clearing the User Address Space

The PRIMOS level command FILMEM clears the user address space (for non-
segmented programs). It is suggested that this command be invoked prior
to the first use of the Linking Loader and after unsuccessful loading
attempts. FILMEM will clear the user address space and assure the user
of a clean start.

The command format is:

FILMEM (RMODE (Prime 300, 400, 500) 32K)

or

FILMEM ALL (RMODE (Prijne 300, 400, 500) 64K)

and has the result below:

Command Operating System

PRIMOS II PRPPS III, IV, V

FILMEM Clears locations '100 to Clears locations '100 to
'47777 '77777

FILMEM ALL Clear all user space Clears locations '100 to
'177777

When FILMEM is employed prior to loading, all memory locations will
initially be set to zero. If no other characters are ever moved to the
data area, the zeroes will remain, possibly as unwanted characters.

INVOKING THE LOADER

When the COBOL program is using sequential files, (non-MIDAS) , the Loader
is invoked by the PRIMOS command:

LOAD

This loads the Linking Loader into locations '60000 to '63777 in the user's
address space. When the COBOL program uses indexed or relative files,
the Loader should be invoked by the PRIMOS command:

HILOAD

This loads the Linking Loader into locations '174000 to '177777. Except
for the relocation, HILOAD is identical to LOAD as far as the user is
concerned.

Replacement Sheet 6 - 3 January 1978

SECTION 6 PDR3056

USING THE LOADER UNDER PRIMOS

All loader functions are available through user terminal keyboard
cannands. When the LOAD (or HILQAD) command is typed, the Linking Loader
is in command; the loader prints the $ prompt character on the user
terminal and awaits a command line.

EXAMPLE:

LOAD
I

The $ prompt character means that the loader is in command mode until a
QUIT command is received. (The QUIT carmand returns control to PRIMOS
level). Each prompt character is followed by a loader command, according
to the command definitions. After each successful execution of a command,
the loader types the $ prompt character. If the load is complete (i.e.,
there are no missing routines or modules) the loader will return the
message LC, indicating that all external references have been satisfied.

EXAMPLE:

OK, LOAD invoke loader
GO
$ LP B+TEST load object program
$ LI COBLIB load COBOL library
$ LIBRARY load FORTRAN library - ^ ^
LC load is complete will be returned by the loader ^f
$ QUIT ready for next command
OK,

If an error occurs in the loader itself during an operation, a two-letter
error code will be printed followed by the $ prompt character. Loader
error messages and suggested handling techniques are discussed immediately
following the discussion on most frequently used loader commands.

S*

When a system error (FILE NOT FOUND, NO SUCH UFD, NO ACCESS RIGHTS, ETC.)
is encountered, the loader prints this system error and returns prompt
symbol ($).

NOTE: The loader also accepts commands from a command file. Comments
may be used in this file; an asterisk (*) is the first character of a
comment line.

Replacement Sheet 6 - 4 January 1978

PDR3056 LOADING AND LINKING

ft

r

Example of a Command File:

* COMMAND.FILE.TO.LOAD.THE.LOADER
FILMEM
* INVOKE LOADER
LOAD
LOAD B+PRGM
LI COBLIB
LI
SAVE *PRGM
QUIT
* INSTRUCT.COMPUTER.TO.READ.NEXT.FROM.TERMINAL
CO TTY

COMMAND FORMATS

Each loader command consists of a command name followed by a series of
arguments, in the same format as the PRIMOS command line:

COMMAND name-1 name-2 arg-1 arg-2 arg-n

where COMMAND is the command name, each Name is a text string, and each
Arg is an octal number of up to six digits.

Long filenames (up to 32 characters) are supported; treenames may not be
used. Command names may be abbreviated to two characters. Arguments are
separated by spaces or commas. Up to three alphanumeric fields (non-
numeric first) and nine (numeric only) arguments are allowed. In many
cases, it is possible to omit arguments. (If any argument is included,
all arguments to the left of it in the command line must also be
included).

A complete list of the LOAD commands is given below. (Underlining
indicates minimum required abbreviation).

Command Function

ATTACH Attach to different UFD

AUTOMATIC Automatic generation of base areas

COMMON Relocate common address

EXECUTE Direct program execution

Replacement Sheet 6 - 5 January 1978

SECTION 6 PDR3056

Command

FORCELOAD

HARDWARE

INITIALIZE

LIBRARY

LOAD

MAP

MODE

guiT

SAVE

SETBASE

VIRTUALBASE

XPUNGE

Loader Commands

Function

Unconditionally loads object files

Hardware definition

Reinitialization

Loads library files (i.e., object files in UFD=
LIB)

Loads object files

Generates Load state map

Select addressing mode

Returns command to PRIMOS

Saves loaded memory image

Defines a new linkage area

Relocates base sector

Controls the deletion of symbols

• • $

3
It is convenient to discuss the loader commands under three categories:

1. Commands the programmer uses quite often:

MODE (mostly with MIDAS files)
COMMON (mostly with MIDAS files)
LOAD
LIBRARY
SAVE
QUIT
MAP
EXECUTE

2. Commands the programmer uses less often, usually in response to
specific program requirements (as overflowing memory, etc.)

AUTOMATIC
INITIALIZE
ATTACH

38

3

REV. 0 November 1977

PDR3056 LOADING AND LINKING

3. Commands designed for the use of the systems programmer.
These are normally of very little use to the applications
programmer. They are described in the PROGRAM DEVELOPMENT
SOFTWARE User Guide, Revision A, MAN 1879.

FORCELOAD
VIRTUALBASE
XPUNGE
SETBASE
HARDWARE

Most Frequently Used Loader Commands

MODE MODE parameter

Specifies which of the CPU addressing modes the Loader is
to use.

File Type Parameter

MIDAS D64R
non-MIDAS (small program) D32R (Default)
non-MIDAS (large program) D64R

NOTES:

1. D32R is the default parameter. It is not necessary
to use a MODE command, as the Loader is in the mode
when it is invoked.

2. If a program loaded with the default mode parameter
causes a memory overflow (MO) error, it is too large
for 32K and should be reloaded with the mode set
using a MO D64R command. The MODE command, when used,
should precede any other command.

COMMON COMMON Address

Moves the top or starting location of FORTRAN-compatible
COMMON to the address specified. This is done before
loading any object modules. COMMON is a FORTRAN concept
and is usually of no concern to the COBOL applications
programmer. However, the COBOL libraries use the FORTRAN
library, which, in turn, requires a COMMON area. When
MIDAS files are used, the COBOL library COBKID location
would interfere with the normal location of the FORTRAN
library COMMON. The programmer therefore moves COMMON with
the command:

CO 50000

November 1977

SECTION 6 PDR3056

LOAD LOAD Filename

Loads an object file into memory. Filename is the name
of the binary object file. The file name usually is
of the form &-Program-name.

LIBRARY LIBRARY [Filename]

Temporarily attaches to the LIBRARY UFD, loads the spec
ified file, and returns to the original UFD.

Filename is the name of the library file to be loaded;
if omitted, the FORTRAN library FTNLIB is loaded.

The normal library loading order is:

MIDAS non-MIDAS

LI COBKID
LI

LI COBLIB
LI

NOTE: LI is equivalent to LI FTNLIB.

SAVE SAVE Filename

Saves the loaded memory image under the name Filename in
the current UFD. Filename is the name under which the
memory image is to be stored.

NOTE: Prime's convention is to use * as the first char
acter of the Filename for the stored memory image. The
user is not restricted to this convention.

QUIT QUIT

Returns to the operating system command level with the
user attached to the home UFD or the last UFD specified
in an ATTACH command (see ATTACH). If the loader has
opened a MAP file, it is closed at this time (see MAP).

REV. 0

PDR3056 LOADING AND LINKING

Examples of load (user input is underlined):

OK, HILOAD
$ MO D64R
$ CO 50000
$ LO B+-SAM
$ AU 20
$ LI COBKID
$ LI
LC
$ SAVE *SAM
$ QUIT
OK,

OK, LOAD
[$ MO D64R]
$ LO B-̂ SAM
[$ AU 20]
$ LI COBLIB
$ LI
LC
$ SAVE *SAM
$ QUIT
OK,

MIDAS files

invoke Loader
set mode
move COMMON out of the way
load COBOL object file
(see AUTOMATIC command)
load COBOL MIDAS library
load FORTRAN library
load is complete
save memory image
return to PRIMOS

non-MIDAS files

invoke Loader
[set mode if program is large]
load COBOL object file
[if program is large - see AUTOMATIC]
load COBOL library
load FORTRAN library
load is complete
save memory image
return to PRIMOS

November 1977

SECTION 6 PDR3056

Less Frequently Used Loader Commands

Such commands are generally used for one or more of the following reasons:

1. Solving a specific problem in loading a program (see Loader
error messages) ;

2. Optimizing the loading of a program;

3. Portability between different levels of Prime computers ;

4. Added convenience to the programmer.

Load state parameters and their starting values are given in Table 6-1 below:

Parameter

*LOW
! *HIGH
, *START
! *PBRK
! *CMLOW
! *CMHIGH
1 *SYM
! *UII

Definition

The lowest location in memory loaded
The highest location in memory loaded
The location at which execution will begin
The next location in memory to be loaded
The lowest location in COMMON
The highest location in COMMON
The lowest location used by the symbol table
The net hardware/UII package requirement

(see HARDWARE command for meaning)

Value at Start \
of load J

177777 J
0
0
1000
XX777 !
XX777 ;
YYOOO i
o :

Table 6-1. Load State Definition

NOTE: XX = Last Sector in loader occupied by loader

YY = First Sector occupied by loader

REV. 0 6 - 10

PDR3056 LOADING AND LINKING

AUTOMATIC AUTOMATIC XXXXXX

Causes the loader to insert a base area of length XXXXXX
whenever the loader detects the end of a routine and more
than 300 (octal) locations have been loaded since the
last base area was inserted.

The value of XXXXXX may be changed between load files.
This automatic feature is turned off with an AU 0
command.

Automatic helps to reduce the number of memory references
through sector 0 by supplying base areas between load
modules.

INITIALIZE INITIALIZE [Filename]

Initializes the loader and then optionally performs the
same actions as a LOAD command. In the loader's initial
ized state, the load state parameters (Table 6-1) return
to their default values. If no Filename is provided,
the loader repeats its prompt character ($). This
allows the programmer to restart a LOAD session without
the necessity of returning to the PRIMDS level and re-
invoking the loader.

ATTACH ATTACH [UFD] [Password] [Ldisk] [Key]

Attaches to different UFD's.

UFD:

Password:

Ldisk:

Key:

Any User File Directory. However, the user
is attached to the home UFD when no UFD name
is specified.

The user gets owner status if he gives the
owner password and non-owner status if he
gives a non-owner password. The password
parameter is necessary only when the UFD
is password-protected.

If the Ldisk parameter is omitted, the
loader searches only device 0 for the
specified UFD. If an Ldisk value of
'100000 is specified, the file system searches
all initiated devices in logical unit order.

The values for Key most likely to be useful
during loading are:

6 - 11 November 1977

SECTION 6 PDR3056

0 Do not change home UFD (Default).

1 Adopt named UFD as home UFD.

2 Attach to sub-UFD in the current
UFD; do not set as home.

3 Attach to subUFD in the current UFD;
set as home.

If key was specified as 0 or 2, the user may
return to the home UFD by entering AT.

The ATTACH command allows the programmer to load
program modules stored in different UFDs without the
need of explicitly copying these program modules into
the UFD invoking LOAD.

NOTE: The LIBRARY command automatically attaches to
the library UFD in order to load the library module and
then re-attaches to the UFD in which LOAD was invoked.

MAP MAP [Filename] [option]

Lists a load map. Filename is the name of the map to be
opened, and option is an octal value which selects one
of four map options. The loader will close the map
file(s), if any, at the end of the load session.

Option Number Load Map Information

None Load state, base area, and
symbol storage map; symbols
sorted by address (full map).

1 Load state only

2 Load state and base area

3 Unsatisfied references only

Map Option 1 - Load State Map

The load state map identifies:

1. The lowest and the highest storage memory
locations;

2. The location at which the program execution
begins;

REV. 0 6-12

PDR3056 LOADING AND LINKING

f" 3. The next location available for loading;

4. The high and low common area;

5. The lowest location used by the symbol table;

6. The net hardware UII package requirement.

These parameters are printed in the load state map with
a corresponding storage address (See Table 6-1).

Load State Map 1

OK, LOAD
GO

r $ LP B+SIMP
$ LI COBLIB
$ LJ_
LC
$ MA 1
*START 001000 *L0W 000200 *HIGH 006512 *PBRK 006513
*CML0W 063777 *CMHIGH 063777 *SYM 057401 *UII 000001

Map Option 2 - Load State Map and Base Area Map

JT Th e base area map includes the lowest, highest, and
next available locations. Each line contains four
addresses as follows:

*BASE XXXXXX YYYYYY 111111 WWWWWW

XXXXXX = Lowest location defined for this area
YYYYYY = Next available location if starting up

from XXXXXX
^^ 111111 = Next available location if starting down

from WWWWWW
WWWWWW = Highest location defined for this area

The base area map includes a load state map:

Load State and Linkage Area Map 2

$ MA 2
*START 001000 *LOW 000200 *HIGH 006512 *PBRK 006513
*CMLOW 063777 *CMHIGH 063777 *SYM 057401 *UII 000001

*BASE 000200 000220 000777 000777
*BASE 001527 001571 001570 001570
*BASE 002515 002557 002556 002556
*BASE 003404 003427 003434 003435

6 - 13 November 1977

SECTION 6 PDR3056

MAP Option 3 - Unsatisfied References Only

Lists the labels and external reference names which have
been referenced but not loaded.

unsatisfied References Only MAP 3

$MA 3 (No unsatisfied references, therefore no printout)

MAP Option Number Omitted - Full Map

A full map contains all components of a load map including
a full symbol storage listing.

The symbol storage listing consists of every defined label A

or external reference name, printed four per line in the
following format:

namexx NNNNNN

or

Namexx NNNNNN**

NNNNNN is a six-digit octal address. The ** flag means the
reference is unsatisfied (i.e., has not been loaded). Every
map begins with a reference to a special FORTRAN COMMON
block LIST, defined as starting at location 1.

Load State, Linkage Area and Instruction Storage Map

$MA
*START 001000 *LOW 000200 *HIGH 006512 *PBRK 0065^
*CMLOW 063777 *CMHIGH 063777 *SYM 057401 *UII 0O0OL.

*BASE
*BASE
*BASE
*BASE

LIST
F$A1
F$A6
F$HT
AC4
I0CS$T
LUTBL

000200
001527
002515
003404

000001
001501
001512
004767
005052
005160
005256

000220
001571
002557
003427

F$WA
F$A3
F$CB
AC1
AC5
F$AT
PUTBL

000777
001570
002556
003434

001020
001501
002034
005047
005053
005172
005313

000777
001570
002556
003435

F$WX
F$A2
F$IOBF
AC2
WRASC
F$AT1
RSTBL

001026
001505
004660
005050
005054
005174
005350

F$IO
F$A5
F$ER
AC 3
I0CS$
WATBL
0$AD07

001102
001505
004762
00505!^
005061
005237
005405

REV. 0 14

r
PDR3056 LOADING AND LINKING

Load maps may be sent to a file instead of the user's
terminal.

EXAMPLE:

This example illustrates how the loaded memory image
can be SAVEd as a file (RUNFIL) in the UFD, and a Load
Map stored in a file MAPI.

OK, LOAD invoke loader
GO
$ LP B+SIMP load object file
$ LI COBLIB load COBOL library
$ U load FORTRAN library
LC
$ MA MAP 1 send map to file MAPI
$ SA RUNFIL save loaded memory image
$ EX execute program

TEST MESSAGE output of program

Filename RUNFIL is now stored in the current UFD, and
Filename MAPI contains the map.

OK, SLIST MAPI
GO
*START 001000 *LOW 000200 *HIGH 006603 *PBRK 006604
*CMLOW 063777 *CMHIGH 063777 *SYM 057374 *UII 000001

EXECUTE EXECUTE

Enables the user to start execution of the loaded
program. Execution starts at the location shown by
the *START entry of the load map.

LOADER ERROR MESSAGES

Message Meaning

CM Command error. Illegal command format.

* GT Group Type error. The loader has encountered an un
recognizable piece of object text. Loading is dis
continued. If object module is COBOL, make sure that
it was compiled without errors.

The source module is not an object file (output of
FTN, PMA, etc.) or is a segmented-address object
file (64V).

6 - 1 5 November 1977

SECTION 6 PDR3056

* MI xxxxxx Multiple Indirect. While linking in 64R mode, the
loader attempted to add indirection to an already
indirect instruction at location xxxxxx. The contents
of xxxxxx are the proper flag, tag, and object.

* MO Memory Overflow Errors.

As users' programs become larger, MO (memory overflow)
errors become more frequent. This section contains a
description of the several typical causes of these
errors and suggested solutions to these causes.

When MO error occurs, the user should do a 'MA 2' and
examine the map for any of the following possible
situations (see MAP):

a. The address of the bottom of the symbol table
(*SYM) is at or close to *PBRK. This indicates
that there is not enough room below the loader
for the whole program. HILOAD will probably solve
the problem - assuming the user is not already using
HILOAD.

b. (For P400/500 only) The program and data are too
large to fit into 64K of memory. The program
modules should be recompiled in 64V mode and
loaded using SEG (see Section 7).

N6 Never 64R mode. Code is being loaded in 64R mode,
which will not execute properly. Loading is discontinued.

Recompile or reassemble the source files in 64R mode,
or remove a D64R command from the load session, o_r
look for a PMA module which has set the load mode to
64R (see MODE).

NOTE: These are hard errors; the load process cannot
be renewed. Correct errors and begin the load
process anew.

REV. 0 6-16

PDR3056 LOADING SEGMENTED PROGRAMS

r SECTION 7

LOADING SEGMENTED PROGRAMS

INTRODUCTION

This section describes the use of SEG, which is Prime's utility module
for loading, modifying, and running segmented programs. A segment can
be up to 64K word block of user's virtual address space. Segment '4000
is that segment which SEG and other external commands occupy when invoked.
SEG creates a runfile of up to 15 or 31 segments. (Check with the systems
manager to determine which version has been implemented.)

PRIMOS assigns memory segments to a user as they are accessed. These
are not released until logout. Since only a fixed number of segments
are available for all users, additional segments should not be invoked
unless the user is actually executing or examining a segmented program.
Most of the functions of SEG use only one segment; only those options
which restore a runfile use extra segments, i.e., RESTORE, RESUME, and
EXECUTE.

SEG must perform many of the operations on segmented runfiles which are
performed on relative-addressed runfiles at the command level or by the
Linking Loader. Since the nature of SEG runfiles differs from that of
the relative-addressed runfiles, separate SEG commands are required.

Segmented Runfiles

A segmented runfile consists of segment subfiles in a segment directory.
For this reason, the reader cannot delete a SEG runfile with a PRIMOS-
level DELETE command; instead, use the DELETE command in SEG. (The
TREDEL command in FUTIL can also be used to delete a SEG runfile, but
it operates much more slowly than SEG's DELETE.) Each segment of the
runfile consists of 32 ('40) subfiles of '4000 words each. Subfile 0
of the runfile is used for startup information, the load map, and the
memory image subfile map. Memory image subfiles begin in segment sub
file 1. Only the subfiles actually required for the runfile are stored
on the disk.

SEG's Loader

SEG has a virtual loader (i.e., it loads to a file rather than memory)
which requires the name of the runfile before anything is loaded. The
runfile may be new, or it may be a previously used SEG runfile; it can
be in any UFD. An old unsegmented SAVE file cannot be used.

November 1977

SECTION 7 PDR3056

As the symbol table is always available, SEG's loader may be used to add
modules to an existing runfile. Similarly, a partial load may be saved
with the SEG SAVE command and the load completed later. In addition,
selected modules may be replaced in a SEG runfile.

Functional Structure of SEG's Loader

SEG's Loader has three types of commands:

1. Commands which load object files;

2. Commands which override the Loader's defaults ("how", "where",
"what", "how much", "from where");

3. Commands which perform operations with the current state of the
load and/or with SEG itself (e.g., getting a load map, executing the
program.)

Type 1: Commands which load object file (LO, LI, RL, PL, IL)

These commands all have the possibility of having modifiers included in
their command line. These modifiers are never used in the basic SEG load
sessions. For the most part, only LO and LI are needed.

Modifiers are:

A. Prefixes - P/, S/, D/, F/

B. Three numeric field suffixes

The form of these modifiers is exactly the same for all loading commands.

Type 2: Commands which override Loader Defaults (AT, A/SY, R/SY, SY, SP,
ST, XP, OP, CO)

Each of these commands requires an argument list unique to itself. These
commands are never required in the basic SEG Load session.

Type 3: Commands operating with the current state of LOAD or SEG (MA,
SA, EX, IN, QU, RE)

One or more of these commands is necessary to complete the load and leave
the Loader in an orderly manner. The most useful commands are EX, SA, MA,
and QU. Some of the type 3 commands have optional arguments; no arguments
are required in the basic SEG Load session.

Object File As Input

The object file of the program modules must have been created using 64V
mode of the COBOL compiler. Modules written in other languages may also
be loaded, if they have been compiled or assembled properly.

REV. 0

r
PDR3056 LOADING SEGMENTED PROGRAMS

Data consists of all COMMON blocks and link frames. Code and data are
loaded in separate segments to support re-entrant procedures. The
Loader assigns code and data segments. The first segment ('4001) is
used for code. Usually segment '4002 will be used for data. The Loader
loads data and code into appropriate segments and opens new segments
as required. (It is possible to put both data and procedure in the
same segment to save space. Care is required not to create an incorrect
load.)

The Stack

The Loader assigns a stack (which is a dynamic work area) when SAVE is
invoked. The stack is usually assigned as the next free location in the
first procedure segment with '6000 free words. If no such segment exists,
a new data segment will be assigned with the first location in the stack
set to 4. The user may force the location of the stack and/or may change
its size. (See the Loader's STACK command and the Modification'sub -
processor's SK command.)

SEG Commands

When invoking one of SEG's functions, the form of the command is:

COMMAND Fname-1 Fname-2 Par-1 Par-2 Par-3

Fname-1 is the filename or the treename of the file to be accessed. Tree-
name enables files outside the current UFD to be accessed. SEG remembers
the name, and if the name is not changed, it becomes the default. If no
current file name has been established, SEG will request a treename.
In order to reference a new runfile, any SEG command may be invoked
with a new Filename-1. The nature of the other parameters depend on the
function.

A complete list of SEG commands is given below. Those commands discussed
in this section are preceded by the greater than character (>). Those
commands discussed in the shared code section are preceded by the plus
sign (+). Permissable abbreviations are underlined. Commands not
flagged require a knowledge of PMA and/or are specifically designed for
in-house use.

Function

delete a SEG runfile
print a list of SEG commands at user's terminal
generate a load map
invoke modification sub-processor

write new copy of SEG runfile to disk
modify save range of existing segment
return to SEG command level
alter stack size and/or location
change program execution start address
rewrite all segments to disk (to preserve patches)

November 1977

>
>
>
>
>

>
>
>

Command

DELETE
HELP
MAP
MODIFY (SAVE)

NEW
PATCH
RETURN
SK
START
WRITE

SECTION 7

>
>

>
>
+
+
>
>
>
>
+

+
>
>
>
>
+

+
>
>
>
>

+

>
+
>
>

>
+
>
>
+
+

Command

PSD
QUIT
RESTORE
RESUME or RESUME
SHARE
SINGLE
TIME
VLOAD (LOAD)
VLOAD *~(tOAD*)

ATTACH
A/SYMBOL

COMMON ABS
COMMON REL

D/**
EXECUTE
pT**
IT
INITIALIZE
LIBRARY
LOAD
MAP
OPERATOR
PL
pT**
guiT
RETURN
RL
R7SYMBOL

SAVE
SPLIT
STACK
SYMBOL
si**
XP

PDR3056

Function

invoke VPSD debugging utility
return to PRIMOS command level
bring SEG runfile into user memory
restore SEG runfile and begin execution
write shared code and data into separate files
create RMODE file image of single segment
print time and date of last runfile modification
define runfile and invokes loader for creation
define runfile and invokes loader for appending

attach to another UFD
define a symbol in memory and reserve space for
it using absolute segment numbers
relocate COMMON using absolute segment numbers
relocate COMMON using relative segment assign
ment
perform load using previous parameters
save load to disk and execute program
forceload all routines in object file
load the impure FORTRAN library
initialize and restart SEG's loader
load library file (UFD=LIB)
load object file (user UFD)
generate loadmap
relax/impose high level restrictions
load the pure FORTRAN library
load on a page boundary
return to PRIMOS command level
return to SEG command level
reload a routine
define a symbol in memory and reserve space
for it using relative segment assignment
save load to disk
break segment in data and procedure portions
change stack size
define a symbol at a specific location in memory
expunge symbols from symbol table; delete base
information

For clarity, tne user may prefer to use command names in full rather than in
abbreviated form. This will not adversely affect SEG's operation.

REV. 0

r
PDR3056 LOADING SEGMENTED PROGRAMS

Vestigial Commands

A number of commands exist whose functionality have been superceded,
either by improvements in SEG, improvements in PRIMOS itself, or for
increased clarity. For compatibility with previous revisions, these
commands are still supported and will perform exactly as before.
However, they will no longer be documented.

Typing these letter combinations will not generate error messages,
but users cannot be certain of the result. Do not use them.

Commands at SEG level: LO, LO *, PA, SA

Commands in the loader: AS, FO, SH

Commands in the Modi
fication subprocessor: A, B, EN, KE, X

SEG Messages

When a load is complete, i.e., all references have been satisfied,
SEG's Loader prints the message LC at the user's terminal.

The message COMMAND ERROR and a new prompt character will be printed
at the user's terminal in response to an unrecognized command or a
command format error. The SEG Loader also has a series of error
messages which will be printed at the terminal. These are listed
in Appendix H, along with probable causes of the errors and sug
gestions for correcting or eliminating them.

USING SEG

SEG is a command under CMDNCO; the COBOL programmer will invoke SEG
in one of two ways:

1. SEG Filename - where Filename is the filename (or treename)
of a SEG runfile. This command loads the runfile into segmented
memory and starts execution. This is analogous to the R Filename
command for programs loaded with Prime's linking loader (see
Section 8 - Execution).

2. SEG - accesses the SEG commands allowing the user to load,
modify, and/or execute a SEG runfile. These are discussed in
this section.

SEG displays a # on the terminal as a prompt character; the Loader and
Modification subprocessors display a $ as a prompt character to solicit
subcommands.

November 1977

SECTION 7 PDR3056

Command Files

SEG accepts commands from a command file.

NOTE: Command file comments, i.e., commands of the form:

* THIS.IS.A.COMMENT

are supported only in SEG's loader. Use of comments in any other portion
of SEG will give a non-fatal COMMAND ERROR and a prompt character.

Filenames

SEG supports both long filenames and treenames. Treenames conform to the
PRIMOS standard with one exception. If a password is required to obtain
access, the entire treename must be preceded and followed by single quotes.

EXAMPLE:

An object file SECRET in UFD CYPHER is protected by the password CRYPTO.
To load such a file, the command would be structured:

$LOAD 'CYPHER CRYPTO > SECRET'

(where user input is underlined)

If a command is given and a SEG runfile name is required, the request

SAVE FILE TREENAME:

will be printed out. The user should enter a SEG runfile filename (or
treename).

The first time a SEG runfile is entered, it is remembered by SEG and becomes
the established runfile name. In most commands, it is then unnecessary to
reference any SEG runfile if the established one is meant. This remains
the established runfile name unless a new SEG runfile name is established
by the user. (This is discussed under each specific command.)

Frequently Used and Essential Commands - Applications Functions

The commands herein outlined are presented in the order in which they would
normally be used.

REV. 0

PDR3056 LOADING SEGMENTED PROGRAMS

r HELP HELP

Prints a list of the SEG commands at the user's terminal.

VLOAD VLOAD [filename]

This command accesses the SEG loader. Filename is the
filename (or treename) of a SEG runfile. If filename is
omitted, the established runfile will be used" If file
name as specified is the name of an existing SEG runfile,
that runfile will be reinitialized before control is
passed to the loader.

NOTE: Prime's convention is to use # as the first char
acter of a SEG runfile name (e.g., #TEST). Although the
system does not require this, the user should follow this
convention unless there are compelling reasons not to do
so.

The VLOAD (or VLOAD *) command performs three functions:

1. Defines (explicitly or implicitly) the name of
the SEG runfile.

2. Specifies whether a new file is to be written or
an existing file is to be added to.

3. Transfers operations to the SEG Loader. The SEG
Loader prints the prompt character $ to differ
entiate itself from SEG-level commands.

The Loader has a large number of subfunctions. Most of these subfunctions,
specifically designed for use in creating very large applications packages,
shared procedures, and Prime in-house systems, will probably be of little
consequence to most users. Frequently-used Loader commands are discussed
below in their most common form.

LOAD LOAD filename

Where filename is the filename (or treename) of the file
to be loaded. Usually filename will be of the form
B+Prgname. The file should be an object file created
by the COBOL compiler with the 64V option. If filename
is not given, or is an incorrect type (not an object tile),
an error will be generated.

The Loader will process the object file, making it part
of the runfile being created, and linking it to other
modules already loaded. All questions of memory manage
ment are handled by the Loader.

November 1977

SECTION 7 PDR3056

NOTE: If a treename is used, the Loader remains attached
to the UFD (or sub-UFD) in which that file resides. The
user must explicitly re-attach to the original UFD if
desired, by typing AT in response to the $ prompt.

LIBRARY LIBRARY [filename]

Where filename is the name of the file in UFD=LIB which
is to be loaded into the runfile. The file filename must
be one containing object text compiled (or assembled) in
64V mode; if not, an error will be generated. If filename
is not supplied, the FORTRAN library files PFTNLB and
IFTNLB will be used. The Loader will then process the
library file in the same manner as LOAD processed object
files. In most cases, any libraries needed are loaded
after other object files.

NOTE: LOAD and LIBRARY are part of the Loader's family
of load commands. Both may be modified by optional numeric
parameters and/or command modifiers S/, F/, D/, to give
the user greater control over placement of modules in the
runfile. These options are described later in Sections
11 and 12.

MAP MAP 3

This command prints a list of the unsatisfied references
(i.e., procedures called which ha\e not been loaded) at
the user's terminal. This command is especially useful
if the user does not get the LC (Load Complete) message
from the Loader. Loadmaps are discussed in detail in
Section 11.

SAVE SAVE

This command saves the result of the load by writing all
buffers out to the runfile on the disk. A location for
the stack is assigned at this time. (A MAP command prior
to SAVE will show no stack assigned; a MAP command after
wards will give the assigned location of the stack.

EXECUTE EXECUTE

First SAVEs the program, if necessary, then executes it.
After execution, control returns directly to PRIMOS. An
EXECUTE command may follow a SAVE command.

REV. 0

r
PDR3056 LOADING SEGMENTED PROGRAMS

QUIT QUIT

Returns the user to PRIMOS command level. QUIT does not
SAVE the runfile. To keep the established runfile, per
form a Loader SAVE prior to QUITting.

EXAMPLE:

The user has compiled a main program, MAIN; a subroutine in a separate
source file SUBR has also been compiled. Both have been compiled in 64V
mode using the default object filenames. They could be loaded as fol
lows (user input is underlined):

OK, SEG bring SEG into memory
GO
VLOAD #MAIN invoke the Loader and establish a runfile
$ LP B*MAIN load the main program
$ LP B̂ -SUBR load any separately compiled subroutine
$ LI VCOBLB load the COBOL library

($ LI VKDALB load this system library if MIDAS files
are used)

$ LI_ load the FORTRAN library
LC Loader indicates all references are satisfied
$ SAVE user saves runfile
$ QUIT return to PRIMOS level
OK,

DELETE DELETE filename (1)

or

DELETE (2)

Where filename is the name (or treename) of a SAVE SEG
runfile. This command deletes the SEG runfile filename
(1) or the currently established runfile (2).

NOTE: Do not attempt, to delete a SEG runfile with the
PRIMOS level DELETE command. It will delete the segment
directory, but not the subsidiary files in the directory,
which you then cannot delete. If necessary to delete a
runfile outside the SEG utility, use FUTIL'S TREDEL
command.

November 1977

PDR3056 EXECUTING THE LOADED PROGRAM

SECTION 8

EXECUTING THE LOADED PROGRAM

INTRODUCTION

This section treats the following topics:

• Execution of program memory images saved by the Linking Loader
(64R).

• Execution of segmented runfiles saved by SEG's Loader (64V).

• CM$L (64R)/C$IN (64V) utility programs.

• Run-time error messages.

EXECUTION OF PROGRAM MEMORY IMAGES SAVED BY THE LINKING LOADER (64R)

Execution of a COBOL program in 64R mode is performed at the PRIMOS level
using the RESUME command:

OK, R * filename

where ^filename is the name of the file containing the saved memory
image from the loading process and is in the current UFD to be executed.

RESUME brings the memory-image program ^filename from the disk into the
user's memory, and begins execution of the program after a dialogue with
CM$L (see below).

The START command allows programs to be executed which have been made
resident in the user's memory by a previous RESUME command. This is
usually occasioned by a STOP literal statement in the COBOL program.

The format for the START command is:

OK, S

The program resumes at the address value at which execution was
interrupted.

November 1977

SECTION 8 PDR3056

EXAMPLE:

OK, R *PRGRM Begin execution
GO

QUIT User hit CTRL/P to stop.
OK, S Restart program from last point of
GO execution.

Execution restarted

Upon completion of the program, control returns to PRIM)S command level.

For a complete discussion of these commands, see the PRIMOS Interactive
User Guide, MAN 2602.

EXECUTION OF SEGMENTED RUNFILES SAVED BY SEG'S LOADER [64V)

Execution of a COBOL program in 64V mode is performed at the PRIMOS level
using the SEG command:

OK, SEG #filename

where #filename is the filename (or treename) of a SEG runfile. SEG
loads the runfile into segmented memory and begins execution of the pro
gram after a dialogue with C$IN (see below). SEG should be used for
runfiles created by SEG's loader; it should not be used for program
memory images created by the Linking Loader.

EXAMPLE:

OK, SEG #PRGRM Begin execution
GO

OK, Program complete; PRIMOS requests next
command.

CM$L (64R)/C$IN (64V) UTILITY PROGRAMS

Immediately following the execute commands of RESUME for 64R mode and
SEG for 64V mode, a series of questions will be asked concerning run
time file assignments . These questions are prompted by the utility
programs CM$L for 64R mode, and C$IN for 64V mode. To the user, there
will be no noticeable difference between the two.

REV. 0

PDR3056 EXECUTING THE LOADED PROGRAM

The programs will ask on the terminal:

ENTER FILENAME AND UNIT

All succeeding lines will begin with the prompt character >. The proper
response to the request above is to give the name of the file (as stated
in the VALUE OF FILE-ID clause of the FILE DESCRIPTION), followed by the
treename desired. For example, suppose that in a COBOL program the
following statements existed:

FD TEST-FILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'FILE1'

then the proper dialogue with CM$L or C$IN would be:

ENTER FILENAME AND UNIT
>FILE1 = PETERS>T1

or
>FILE1 = $MT1, S, Tl, 000001

The first statement will go to a UFD called PETERS and use a file called
Tl as input to TEST-FILE in the program.

The second statement requires MAG TAPE unit one to be assigned, with the
tape mounted to contain a TAPE-ID of Tl and a volume serial of 000001.

The utility programs CM$L and C$IN will do all pre-screening of the files
and display the prompt character > while waiting for user input. There
should be one entry for each FD in the program. When no files are left
to be entered, the single slash character (/) will conclude the session.
Execution of the program will begin, using the file assignments which
were just entered.

Disk Formats [Filenames and Treenames)

A treename in a disk format entry is an extended form of the filename,
which describes the location of the file in the directory structure.
Filenames and treenames may be of the following forms:

1. FILE-ID=UFDNAME [password] [logical disk number (octal)]

2. FILD-ID=* > filename

3. FILE-ID=filename

4. FILE-ID=<volumename>UFDNAME [password] > filename

Everything to the right of the equal sign follows the rules for TREENAME
formation (see PE-T-341 for detailed treatment of TREENAMEs).

In 1 above, the volume with the specified logical disk number is searched
for the specified UFDNAME.

November 1977

SECTION 8 PDR3056

In 2 above, the current UFD is the starting UFD.

In 3 above, the current UFD is searched for the specified filename.

In 4 above, the volume with the specified name is searched for the
specified UFD name. If the volume name is a single asterisk (*), the
MFD in the current volume is searched.

Tape Format

FILE-ID=MAGTAPE, LABEL, TAPE-ID, TAPE-NUMBER

MAGTAPE: $MT(X) X being a 9-track drive number

LABEL: N: for no label information

S: specifies the tape contains standard labels and is
pre-numbered.

TAPE-ID: is up to a 17 character field which is written in the
label of the tape being created; or is used for
comparison if the tape is being read. Label must
have been specified as S.

TAPE NUMBER: is a 6 character field which is checked at open-time
when reading a tape, but is not needed when creating
a tape.

CML/CIN Error Messages

The following are error messages which may be output by the CM$L or C$IN
utility programs:

FILENAME TOO LONG (no equal sign found)
INVALID TREE SYNTAX (see allowable format)
NO FILENAME ENTERED (equal sign with no filename)
INVALID TAPE UNIT (format did not contain MTx)
NO TAPE NAME ENTERED (standard label specified)
INVALID STANDARD/NON LABEL (non S or N)
TAPE NAME GREATER THAN 17
TAPE NUMBER GREATER THAN 6

RUN-TIME ERROR MESSAGES

Alphabetic lists of both RMODE and VMODE run-time error messages are
available in Appendix G.

REV. 0

PDR3056 SORT PROCEDURES

SECTION 9

SORT PROCEDURES

EXTERNAL/INTERNAL SORT ROUTINES

Various utilities are available to effect COBOL sort procedures. These
include external and internal methods as outlined below:

NOTE: The ANSI Sort-Merge Module is not supported by Prime COBOL.

• External operating system COBOL sort procedures

• Internal application sort subroutines

• Sort considerations

External Operating System COBOL Sort Procedures

The External Sort utility of the Prime Operating System (PRIM3S) is
easily accessed by a COBOL program. First, the user must specify the
point in a program at which a sort is to be done. This is accomplished
in the Procedure Division by employing a STOP statement at the desired
location, followed by any valid literal.

EXAMPLE:

PROCEDURE DIVISION.
BEGIN-PROGRAM

PERFORM CREATE-FILE THRU FILE-CREATED.
STOP 'READY FOR EXTERNAL SORT'.

STATE-TWO
PERFORM ADDRESS-CHANGE

At this point, control will shift from COBOL execution to the operating
system command level. The user will then enter an interactive session
on the terminal.

In the following dialogue example, all underlined items must be typed
by the user on the terminal:

November 1977

SECTION 9 PDR3056

SAVE *TEMP 1/77777

SORT

GO
SORT program parameters are:
Input File Name - Output File Name
followed by pairs of starting and
ending columns.

INFILE ODTFILE 2

This will save memory image
locations of all necessary
address registers in a file
named *TEMP.

This command invokes the SORT
utility program.

The operating system responds
with this documentation on the
user terminal.

This entry specifies the input
file name to be sorted, and the
output file; both must be
resident within your UFD. The
2 indicates the number of columns
to sort on.

Input pairs of starting and ending
columns one per line. For reverse
sorting enter "R" after ending
columns.

1 _5_

15 25 R

Beginning SORT

Passes 3 items 2010

OK,

This specifies that the columns
to be sorted are columns 1 through
5, with a reverse SORT on columns
15 through 25.

The computer responds, indicating
the SORT has begin and providing
PASS and Item data.

OK, indicates the SORT is complete.
Control is returned to PRIMOS.

This command will restore the
memory image address register
locations of the previously
saved file.

_ This command will return control to
the next source line of the
application program, which
immediately follows STOP literal.

NOTE: The interactive dialogue above may be established as a COMMAND file.

RESTOR *TEMP

START

REV. 0 9 - 2

PDR3056 SORT PROCEDURES

Internal Application Sort Subroutines

SUBSRT is a sort subroutine available to a COBOL program through a CALL
STATEMENT. It is particularly effective and efficient when sorting
3000 or fewer records. For larger applications, its simple calling
sequence and Data Division Entries may outweigh time considerations.

1. Calling Sequence:

The ca l l ing sequence for SUBSRT contains e ight required
parameters. Use of t h i s c a l l may appear as follows:

Call 'SUBSRT' using SORT-INPUT-FILE, SORT-OUTPUT-
FILE, SORT-PAIRS, SORT-START-COLUMN,
SORT-END-COLUMN, SORT-PASSES, SORT-
ITEMS.

Any va l id COBOL data-names may be used.

2. Data Division Structure

Using the above data-names the following DATA-DIVISION
entries would be used.

02 SORT INPUT FILE PICX (6) VALUE 'SORTIN'
02 SORT-OUTPUT-FILE PIC X (6) VALUE 'SORTOT'.
02 SORT PAIRS COMP VALUE 1.
02 SORT-START-COLUMN CCMP VALUE 1.
02 SORT-END-COLUMN CCMP VALUE 35.
02 SORT-PASSES CCMP.
02 SORT-ITEMS CCMP.

Using the CALL sequence outlined above in 1, and the related Data
Division entries described in 2, the following would occur:

An input file by the name of 'SORTIN' would be stored in
Columns 1 through 35, with the sorted file being designated
as output "SORTOT". The number of passes and items sorted
would be returned to the user from the "SUBSRT" utility.

Data-name parameters of the calling sequence above are defined as
follows:

• SORT-INPUT-FILE

The actual file system name of the block of records to be
sorted must be placed within this six character field.

• SORT-OUTPUT-FILE

The actual file system name for the sorted output file must be
placed within this six character field. It may be the same name
as the input file and may also be a file previously used by the
COBOL application.

9 - 3 November 1977

SECTION 9 PDR3056

SORT-PAIRS

This field must be specified as computational and must contain the
value of the total number of pairs of columns on which the sub
routine will sort.

SORT-START-COLUMN

This field must be specified as computational and must contain the
value of the column on which to begin the sort.

SORT-END-COLUMN

This field must be specified as computational and must contain the
value of the column on which to end the sort.

SORT-PASSES

This field must be specified as computational, with no VALUE clause.
This is a returned argument, stating how many passes the utility
took to complete the sort.

SORT-ITEMS

This field must be specified as computational but cannot contain
a VALUE clause. This is a returned argument stating how many lines
(or records) were actually sorted.

Sort Considerations

Job analysis for SORT utility selection should take into account a variety
of factors. These include file size, processing mode, data type spec
ifications, command file specifications, loading factors, etc.

As previously mentioned, internal sort subroutine, SUBSRT, is partic
ularly efficient when sorting 3000 or fewer records. Time efficiency
decreases as record number increases. This should be considered when
determining the most efficacious sort for the user's application.

SUBSRT is not available for 64K mode.

The PRIMOS External Sort utility allows specification of data type. That
is, ASCII, Binary, Single Precision Integer, Single Precision REAL,
Double Precision REAL may be specified. SUBSRT permits no such spec
ification.

Command files used in conjunction with the External sort should be started
on a unit greater than 6. The system default for running a command file
is unit 6, however, SORT may also open unit 6. This conflict can result
in the error message 'PRWFIL, UNIT NOT OPEN! This problem is avoided
if a command file relating to a sort application is started on a unit
greater than 6.

REV. 0

PDR3056 SORT PROCEDURES

When using the PRIMOS External Sort Utility, the SORT library must be
loaded with the object program. The Linking Loader commands to ac
complish this are as follows (underlined entries indicate user require
ments , $ indicates loader prompt):

OK, HILOAD

GO

$ COMMON 100000

$ MODE D64R

$ LOAD B^xxxx

$ LIB COBLIB

$ LIB SRTLIB

$ LIB FTNLIB

LC

$ SAVE xxxxx

$ QUIT

call loader

set common

load object program file

load COBOL library

load SORT library

load system subroutines

the system will respond with LOAD COMPLETE

save the loaded program

quit the loader; return to operating
system

November 1977

r

P A R T I I I

A D V A N C E D C O N C E P T S

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

SECTION 10

COBOL PROGRAM ENVIRONMENTS, EXPANDED

INTRODUCTION

INTERACTIVE

COMMAND FILES

PHANTOM USERS

CX MODE

The portions of SECTION 10 outlined above were incomplete at this printing.

10 - 1 November 1977

SECTION 10 PDR3056

SHARED PROCEDURES

The following steps should be taken to create and load programs as shared
procedures: (Each step will later be considered in detail.)

• Determine whether shared procedure is applicable and desirable

• Write source code. Program must be identified with PROGRAM-ID
where the program name must be MAIN.

• Load to the runfile using the SEG Loader's. Debug the program.

With this information, initialize and load to the runfile,
splitting procedure and data portions of programs.

• Load for shared procedure and return to SEG command level.

• Separate out segments below '4001 into separate RHODE runfiles
using SEG's SHARE command.

• Incorporate runfiles below '4000 into segments for sharing using
PRIMOS' SHARE command.

APPLICABILITY

In general, programs which are small, or which will normally only be run
by one user at a time, are not candidates for shared procedure. Programs
which are expected to be run by many operators simultaneously, especially
large procedures which use relatively small amounts of data, are excellent
candidates for shared procedures. Examples of the latter type include
Prime's Shared Editor or a user-written order entry system.

The advantages of shared procedures are:

• Only one copy of code is necessary for all users

• Decreases restore time

• Program is more likely to be in cache memory; operation is much
faster for multiple users

• Decreased memory usage, reducing paging

Once it is determined that a program will be loaded as shared procedure,
the programmer must obtain from the system manager the segment numbers
which are to be used for the particular program being loaded. Currently,
segments '2000 to '2037 are available as public shared segments. Some of
these segments may be occupied by Prime-supplied programs. For example,
if the Shared Editor is installed, it will reside in segment '2000.

REV. 0 10

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

System Considerations for the Manager

Public shared segments are a large but finite resource; their allocation
should be made carefully and only for those programs which will benefit
by being loaded as shared procedure. It is possible to incorporate more
than one program in the same segment; the manager is responsible that
no conflict will exist from overwriting, etc.

CAUTION

The public shared segments are re-initialized in a
cold start of PRIMOS. The systems manager should
include in the cold start command file the PRIMOS
SHARE commands necessary to reload these segments.
This also means the system manager must maintain
copies of the SEG runfiles for each program.

SOURCE CODE

The main program which is loaded first must be identified with a PROGRAM-
ID clause as MAIN.

COMPILING

The source program is compiled with the 64V mode option; this produces
code to be loaded with SEG.

LOADING

Loading for shared procedure is a multi-phase process. The aim is to
obtain an optimized load with the program operating properly as designed.
It will be instructive to follow an example illustrating some general
principles.

Consider a program BENCH, with 3 large COMMON blocks AA, BB, and AABB.
The FORTRAN library is required. The simplest load, using SEG's defaults
would be: (user input underlined)

OK, SEG invoke SEG
#VL #PGRM establish runfile and access loader
$L0 B*-PGRM load main program
$LI VCOBLB load COBOL library

C $LI VKDALB for MIDAS files)
$LI load FORTRAN library
LC load is complete
SA save result
MA MAPFIL generate a map in file MAPFIL to be examined
$31 return to PR DOS
OK,

10 - 3 November 1977

SECTION 10 PDR3056

At this point the program will be executed and, if necessary, debugged.
The number of segments used can be decreased by moving the location by
moving the location of COMMON blocks and the stack. The load would be:
(user input underlined)

OK, SEG invoke SEG
#VL #PGRM establish runfile and access loader
$SY AA 4000 60000 locate COMMON block in Segment '4000

above SEG
$SY BB 4002 1000 put BB in segment '4002
$SY AABB 4001 10000 put AABB in segment '4001
$LO B+PGRM load user program
$LJ load FORTRAN library
LC load complete
$SA save load
$RE return to SEG command level
#MO invoke Modification subprocessor
$SK 4001 170000 place stack above AABB in segment

'4000 and assign it '170000 locations
#RE return to SEG command level
#MA * MAPFIL get a loadmap
#QU return to PRIMOS command level

Since the user has taken over some of SEG's functions, he must check the
loadmap to see if the load is reasonable. It would not be amiss at this
point to be certain that the program executes properly.

CAUTION

Relative assignment numbers and absolute segment
numbers must not both be used in the same load.

LOADING FOR SHARED CODE

Loading for shared code requires the capability of being able to separate
the procedure frame from the linkage frames. This capability exists in
the advance functionality of the loader commands. Other commands in the
loader allow placing of COMMON and other symbols using absolute segment
numbers, expunging defined symbols from SEG's symbol table, and
forceloading.

The loader also allows segments to be split into procedure and data
portions to conserve segments and/or to load into segment '4000 the RHODE
Interlude program RUNIT. RUNIT allows the segmented program to be invoked
as an RMODE program from the user's UFD or installed in UFD=CMDNC0.
These commands will be discussed later in this section.

REV. 0 10

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

SPLIT segno addr Note 1.

or

SPLIT addr Note 2.

Breaks a segment into procedure (lower) and (upper) portions. This
operation conserves segments. It also allows the loading of RUNIT as
an aid to creating shared programs.

Segno is the absolute octal segment number.

Addr is the location of the split in the segment. Addr must be a
multiple of '4000.

NOTES:

1. Splits the segment into procedure and data portions as specified;
used to decrease number of segments used.

EXAMPLE:

SP '4000 '10000 - splits segment '4000, with locations below '10000
for procedure and rest of the segment for data.

2. This is the form used for shared procedure. Segment '4000 is
assumed. In addition to splitting the segment, the interlude pro- *
gram RUNIT is loaded (in 64V mode) beginning at location '1000.

No data or procedure may be assigned to locations above '172000 in
segment '4000, as this is where RUNIT places its stack.

After splitting, RUNIT and RESUME will exist in SEG's symbol table.
RUNIT is the normal starting address; RESUME may be used as a
starting address if the existing stack is to be preserved.

NOTE: Once a segment has been split, it is addressable only specifically,
i.e., with the S/xx or P/xx command (or with D/xx following an S/xx or
P/xx command). Loading must use absolute segment numbers. See S/xx,
D/xx, P/xx.

CAUTION

SEG's Loader does not keep track of split segments and
may assign the stack to the top of the procedure
portion of a split segment. This may cause problems
if there is not enough space between the end of the
procedure portion and the start of the data portion.

10 - 5 November 1977

SECTION 10 PDR3056

A/SYMBOL

A/SYMBOL sname [segtype] segno size

where: sname is the name of the symbol.
segtype is the type of segment, either DATA.

or PROCEDURE; if omitted, a data segment is assumed,
segno is the absolute octal segment number,
size is the number of locations to be reserved for

the symbol if omitted; 0 is assumed.

This command places a symbol and reserved 0 or more locations in memory
for it. If the segment specified does not exist, it will be created.

CAUTION

The user must verify that the number of locations
reserved for the symbol are adequate for its
intended use, and that there is actually sufficient
room in the segment for the size specified.

This command may not be used to satisfy unsatisfied references already
existing in the load.

Example: (TOP+1 is the next available location in a given segment.)

A/SY KELVIN 4002 1000 place symbol KELVIN at the current TOP+1
in data segment '4002 reserving 1000
(octal) locations for it.

A/SY KELVIN PR 4001 1000 place symbol KELVIN at current TOP+L in
procedure segment '4001 reserving 1000
(octal) locations for it.

The example above illustrates one way of placing a COMMON block in a
procedure segment.

A/SY KELVIN DA 4001 1000 place symbol KELVIN at current TOP+1 in
data segment '4001 reserving 1000 (octal)
locations for it.

If the segment specified above did not exist, it would be created and
the address of KELVIN in it would be 0. (A special case of TOP+1.)

COMMON ABS segno

Where segno is the absolute octal segment number into which COMMON will
be loaded.

When loading into specific segments, this command should be used to
specify the COMMON segment either as the one into which the link frames
are loaded, or another if there is some reason to move COMMON away
from the link frames.

REV. 0 10

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

^ CO ABS 4015

Will cause the Loader to load all COMMON into segment '4015 so long as
it will fit, then into segment '4016, '4017, etc. This bypasses SEG's
normal default segment assignments.

CAUTION

Since SEG's normal defaults are bypassed by this
command, it is the user's responsibility to be
certain that segments being reserved for loading
COMMON have not been reserved for other uses.

ADVANCED FUNCTIONALITY OF THE LOADER'S FAMILY OF LOADING COMMANDS

The complete family of loading commands are:

LOAD load an object file (user UFD)
LIBRARY load a library object file (UFD=LIB)
RL reload an object module
PL load the PFTNLB file (UFD=LIB)
IL load the IFTNLB file (UFD=LIB)

PL and IL load pure and impure FORTRAN libraries, respectively. (Relative
segment assignments may be used with PL and IL, but there would rarely be
a need for this.) Relative and absolute loading must not be mixed in the
same load.

Modules may be loaded into specific segments for procedure and link frames
by use of the S/ prefix modifier.

The command format is:

S/xx [filename] addr psegno lsegno

where xx is LO, LI, RL, PL, or IL.

If LO or RL is used, filename is mandatory.

If LI is used, filename is optional. (Omission loads PFTNLB and IFTNLB.)

If PL or IL is used, filename should be omitted.

Addr is the starting load address in the procedure segment.

An addr of 0 is interpreted as start loading at the current pointer
position in the procedure segment. This is the usual value.

Psegno is the procedure segment number.

Lsegno is the data linkage segment number.

10 " 7 November 1977

SECTION 10 PDR3056

Both psegno and Isegno are absolute (octal) segment numbers; both must
be supplies. When loading shared code, procedure will be loaded in
segments '2000 - '2037 as allocated by the system manager.

As with the load into relative segment commands, the segments required
will be created if they do not already exist. If a required segment
runs out of room, the next segment in sequence will be created and used
to continue the load. For example, if the user has declared psegno to
be '2000 and segment '2000 becomes too full for the next routine to be
loaded, segment '2001 will be created as a procedure segment and the
load will precede in segment '2001. Note that some smaller routines
may subsequently be loaded in segment '2000. The S/xx modifier does
not place COMMON areas; this should be done using the CO ABS command
prior to the load.

EXAMPLE:

S/LO B+-JUNK 0 2000 4002 - Load object file B*-JUNK with its procedure
beginning at the current load pointer
location in segment '2000 and its data
linkage areas beginning at the current load
pointer in segment '4002. Previously COMMON
was located with a CO ABS command.

S/IL 0 4000 4000 - Load the impure portion of the FORTRAN
library into the split segment '4000.

As with the relative assignment numbers, the D/ modifier prefix may be
used.

EXAMPLE:

S/LO B+-BENCH 0 2000 4000
D/PL

is equivalent to

S/LO B+-BENCH 0 2000 4000
S/PL 0 2000 4000

CAUTION

When using this modifier (S/) some of SEG's checking
mechanisms are overridden. Therefore, the user must
carefully examine the loadmap to make sure there is
no inconsistency or confusion.

The S/ modifier may not be combined with the D/
modifier either as D/S/xx or S/D/xx.

REV. 0 10

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

Forceloading

When a file is loaded, normally only those routines referenced by
previously loaded modules (or by routines in the library) are loaded.
When building templates or creating partial loads, it is often
desirable to force all routines in a file to be loaded. Forceloading
in SEG's Loader is accomplished with the F/ modification prefix as:

F/xx (filename) [addr psegno lsegno] Note 1.

or

F/S/xx (filename) [addr psegno lsegno] Note 2.

where xx is one of the loading commands, LO, LI, RL, PL, or IL.

Filename is the filename (or treename) of the object file. It is
mandatory for LO and RL, optional for LI, and should be omitted for
PL and IL.

Addr is the start address for forceloading in the procedure segment.

Psegno is the procedure segment number.

Lsegno is the data segment number.

NOTES:

1. This is a simple forceload of the object file filename. Both
psegno and lsegno are relative assignment numbers. The defaults
resulting if parameters are omitted are the same as for the commands
without the F/ prefix.

EXAMPLE:

F/LO BATHINGS - forceload all modules in BATHINGS in default segment.

F/LI - forceload all_ the FORTRAN library in default segments.

2. Forceloads object file to specific segments. Both psegno
and lsegno are absolute (octal) segment numbers (see S/xx for
details). This format would be used for forceloading shared
procedures.

EXAMPLE:

F/S/PL 4000 2000 4002 - Forceload all of the procedure of the
FORTRAN library PFTNLB beginning at
location '4000 in segment '2000 with
linkage area in segment '4002.

10 - 9 November 1977

SECTION 10

NOTE:

S/F/xx is identical to F/S/xx.

The D/ prefix may be combined with F/.

S/LO B^BENCH 0 2001 4002
F/S/PL 0 2001 4002

is equivalent to

S/LO B+-BENCH 0 2001 4002
F/D/PL

RETURN

Returns the user to the SEG command level. This command does not SAVE
the runfile; the user should perform the SEG SAVE subcommand before
the RETURN if the established runfile is to be kept. After loading
for shared procedure has been completed, the load must be SAVED; control
returned to the SEG level and SEG's SHARE command invoked.

SPLITTING OUT

After the load has been completed, the portions of the SEG runfile
corresponding to segments below '4001 must be transformed into RMODE
runfiles using SEG's SHARE command. These files are similar to the
relative addressed mode save files having a conventional save file
header. No files are created for segments above '4000. If segment
'4000 exists and it includes RUNIT (see SPLIT), it may be executed at
PRIMOS command level. The command format is:

SHARE [filename]

Filename is the filename (or treename) of the SEG runfile. If omitted,
the established runfile name is split out.

The RUNIT interlude program sets the correct addressing mode; starting
location and registers are set to the standard default values.

SEG responds to the SHARE command by asking for a two-character ID. SHARE
will use this ID to build the save files with the name yyxxxx, where yy
is the ID given to SHARE, and xxxx is the segment number.

EXAMPLE: (user input is underlined)

#SH #TEST (use default values)
TWO CHARACTER FILE ID: BE
CREATING BE2000
CREATING BE4000
(ready for next SEG command)

REV. 0 • 1 0 - 1 0

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

SINGLE

SEG's SHARE command creates an RMODE runfile for all segments below '4001,
The SINGLE command creates an RMODE runfile for any specified segment,
even those above '4000. This command is:

SINGLE [filename] segno

where filename is the SEG runfile name; if omitted, the established
runfile is used.

Segno is the segment number to be used to create the runfile.

As in the SHARE command, the user is asked for a two character ID.

EXAMPLE: (user input is underlined)

#SI 4001
TWO CHARACTER FILE ID: IX
CREATING IX 001

The SINGLE command only works for segments loaded with the S/xx command,
including the RMODE interlude in the SEG runfile.

This method is of particular use in three cases:

1. The user's program has a small procedure part requiring a large
data area.

2. The user has a large program, most of which is loaded below
segment '4000 as shared procedure.

3. The user's program is primarily a 'transaction processing'
system. Most of the user's (large) program can be loaded at
LOGIN time, or is loaded below segment '4000 as shared procedure.

In case 1 the user will force all of the loaded portion of the program
to reside in segment 4000. Unitialized COMMON blocks will be declared
in other segments and need not be 'loaded' into memory.

In case 2 the user will load only the impure parts of the procedure
(such as IFTNLB) into segment '4000 and will place all link frames and
initialized COMMON in segment '4000.

In case 3 the external LOGIN program will load most of the user's SEG
runfile (the portions residing above '4000) into memory at LOGIN time.
The user's specific applications, referencing the fixed portions above
and below '4000, will be loaded into segment '4000. This case requires
the user to create a 'template' of the fixed portion of the applica
tion on top of which specific applications are loaded.

10 - 11 November 1977

SECTION 10 PDR3056

When the user's procedure is loaded with SEG's loader, segment '4000
is declared as a split segment using the loader's SPLIT command, and
specifying only the location at which the segment is to be split. This
causes SEG's loader to create a procedure area below the designated
location, and a data link frame area above it. Then the RMODE interlude
RUNIT is automatically loaded into the procedure portion. At run-time,
RUNIT will initialize the stack, and transfer control to the user's
routine, MAIN. The user may load other procedure and link-data
information into segment '4000 using the loader's S/xx command.

The user must determine via a previous load where to split segment
'4000.

A slightly different load sequence from that given earlier in this
section:

* THE FOLLOWING EXAMPLE ILLUSTRATES USING SEG TO
* LOAD A NON-SHARED PROCEDURE.
*

SEG

OK,
OK,
OK,
OK,
OK,
GO
#VLOAD #DISPL.NCN_SHARED
$ LO B_DISPL
$ LI VCOBLB
$ LI
LC

MAP 6

$ MAP 7
*START 004002 000006 *STACK 004001 002404 *SYM 171716

SEG. #
004001
004002

TYPE
PROC##
DATA

LOW
001000
000000

HIGH
002403
000325

TOP
002403
000325

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.
C$NCLT 4002 000306 4001 002216 000020 177706
MAIN 4002 000006 4001 001000 000072 177406

DIRECT ENTRY LINKS
EXIT 4001 002374 TNOU 4001 002400

COMMON BLOCKS

OTHER SYMBOLS

$ QUIT

REV. 0 10 12

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

would load the program as non-shared procedure. The resulting RMODE
runfile BE4000 can be invoked with the PRIMOS command RESUME as R BE4000
or it may be placed in the command UFD.

Finally, when the load is complete and saved, the user returns to SEG
via the RETURN command and enters SH on the terminal. When all appro
priate segments have been turned into separate runfiles, the one with
the appended segment number '4000 may be run (suitably renamed if
desired) from PRIMOS command level either from CMDNCO or by a PRIMOS
RESUME command.

EXAMPLE:

Programmer has been assigned segment '2000 by the systems manager.

* THE FOLLOWING EXAMPLE DEMONSTRATES USING SEG TO
* GENERATE A SHAREABLE PROCEDURE.
*

OK,
OK,
OK,
OK,
OK, SEG
GO
VLOAD #DISPL.SHARED_VERSION
$ SP 4000
$ S/LO BJDISPL 0 2000 4000
$ D/LI VCOBLB
D/PL
LC
$ S/IL 0 4000 4000
$ SAVE
$ MAP 6

$ MAP 7
*START 004000 004006 *STACK 004000 001616 *SYM 171556

SEG. #
004000
004000
002000

ROUTINE
C$NCLT
MAIN
TUB
T10B
TlOU
TONL

DIRECT
EXIT

TYPE LOW
DATA## 004000
PROC## 001000
PROC 001000

ECB
4000 004306
4000 004006
4000 004372
4000 004412
4000 004350
4000 004326

ENTRY LINKS
2000 002422

HIGH
004431
001615
002451

PROCEDURE
2000
2000
2000
2000
2000
2000

002216
001000
002436
002444
002402
002374

TNOU 2000

TOP
004431
001615
002451

ST. SIZE
000020
000072
000012
000012
000016
000012

002426

LINK FR.
003706
003406
003772
003772
003750
003726

TNOUA 2000 002432

10 13 November 1977

SECTION 10 PDR3056

COMMON BLOCKS

OTHER SYMBOLS
F$FLEX 4000 001174 RESUME 4000 001042 RUNIT 4000 001000

$ RE
SH
TWO CHARACTER FILE ID: DI
CREATING DI4000
CREATING DI2000
QU

OK,

INCORPORATING FILES INTO SHARED SEGMENTS

Using SEG's SHARE command creates one RHODE runfile for each segment
of the SEG runfile below segment '4001. The RMODE runfiles for segments
below '4000 must actually be incorporated into those segments using the
PRIMOS SHARE command. This operation can only be performed at the system
operator's console. The command format is:

SHARE filename segno access-rights

where filename is the name of the RMODE runfile to be incorporated into
the segment.

Segno is the segment number to be shared.

Access-rights are the access rights assigned to this segment.

Access Rights Permitted Operations

0
200
600
700

none
read
read and execute
read, write, and execute

Segments '1 to '12 and '2000 to '2037 are the current range of sharable
segments; specification of segments other than these will give unpre
dictable results.

CAUTION

Since PRIMOS IV resides in segments '1 to '12, users
should not create files which need to be incorporated
into these segments.

If no value is specified, the default is '600.

REV. 0 1 0 - 1 4

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

The PRIMOS command OPR 1 must precede SHARE commands; OPR 0 must follow
the last SHARE command.

EXAMPLE: (user input is underlined)

OK, OPR 1
OK, SHARE BE2000 2000
OK, OPR 0 default access

The program BENCH can now be executed from the user's UFD by the command
R BE4000 (the name of the RMODE runfile BE4000 may be changed if desired
using the CNAME command).

CNAME BE4000 BENCH

The RMODE image of segment '4000 may also be put into the command UFD and
invoked as a command.

OK, FUTIL
>TO CMDNC0
>COPY BE4000 BENCH

>QU
OK,

invoke FUTIL
define TO UFD
copy BE4000 into UFD=CMDNC0
under the name BENCH
return to PRIMOS

It was not necessary to specify the FROM UFD; the default is the current
UFD.

10 - 15 November 1977

PDR3056 MANAGEMENT SYSTEMS

r
SECTION 11

MANAGEMENT SYSTEMS AND LANGUAGE INTERFACE

INTRODUCTION

This section discusses interfaces of the COBOL language to the following
Prime systems:

• MIDAS, Multiple Index Data Access System

• DBMS, Database Management System

• FORMS, Forms Management System

• Other Programming Languages

MIDAS

Multiple (Keyed) Index Data Access System, MIDAS, provides a series
of programs and subroutines for the creation and maintenance of keyed-
index and/or keyed-index direct access (KI/DA) files.

Keyed-index files are sometimes referred to as ISAM (Indexed Sequential
Access Mode) files. Prime COBOL utilizes MIDAS for its ISAM files.

NOTE: KI/DA is the file access method used by MIDAS. At present, MIDAS
and KI/DA are identical.

Requirements

MIDAS usage requires that the UFD LIB contain the COBKID library (for
non-segmented addressing use, 64R mode), and the VKDALB library (for
segmented-addressing use, 64V mode). At load-time, these libraries
are loaded just prior to loading the FORTRAN library.

Using MIDAS

MIDAS usage falls into four areas (see Figure 11-1).

• Creating/modifying the template - the user defines the data
file, indices, etc. (CREATK)

• Building the data file - data existing in a text or binary
file are converted to a MIDAS file. (KBUILD)

• Maintaining the file - data entries are added, deleted,
changed, or viewed.

11 - 1 November 1977

SECTION 11 PDR3056

BUILO FILE
TEMPLATE

WITH CREATK

MODIFY FILE
TEMPLATE

PARAMETERS
WITH CREATK

YES

REBUILD
INDEXES, ETC
WITH REMAKE

DELETE MIDAS
FILE WITH

KIDDEL

YES

C EXIT TO \
PRIMPS J

REBUILD
BROKEN FILES
WITH REPAIR

YES L.

BUILD DATA
FILE WITH

USER PROGRAM

YES BUILD DATA
FILE USING

KBUILD

KEY:

PRIME-SUPPLIED
PROGRAM

USER-SUPPLIED
PROGRAM

PRIME-SUPPLIED
SUBROUTINES

MAINTAIN
FILE

ADD
RECORD

BILDSR
ADDI$

DELETE
RECORD

DELET$

CHANGE/
UPDATE
RECORD

UPDAT$
(LOCKS)

£-

INQUIRE/
RETRIEVE

RECORD

FINDS
NEXT?

(LOCKS)

RECORD r ExiT TO \
""FIND!"" y PRIMQs J

Figure 11-1. User's Functional Overview
of the Midas File System

REV. 0 11

PDR3056 MANAGEMENT SYSTEMS

• Performing housekeeping - files are restructured after signif
icant maintenance (REMAKE), deleted in part or full (KIDDEL),
or rebuilt after crashes (REPAIR).

Maintenance of the file may be accomplished by more than one user simul
taneously. A lockout subroutine protects data entries from attempts at
simultaneous changes/deletions. All other operations require the user
to have exclusive access to the MIDAS file.

The COBOL user will be most concerned with CREATK, REMAKE and KIDDEL;
where after the initial dialogues later described, interaction with
MIDAS is virtually transparent.

The Template

In order to initiate an Indexed or Relative file for Prime COBOL, the
user must build a MIDAS Template File. This will minimally contain
a segment directory, a file descriptor subfile, a one-level primary
index subfile which contains the index descriptor block, and an empty
last level index block. If the file is organized for direct access,
data segments must be allocated and initialized. For each secondary
index defined, there must be a corresponding index descriptor block and
an empty last level index block.

Creating the Template (CREATK)

A template (file descriptor) for a keyed-index file can be created with
the interactive utility program CREATK. The functions of CREATK are:

• Create a new file

• Modify index or data description for an old file

• Add new secondary indices to a file

• Display existing index or data descriptors.

When constructing a template, the user engages in an interactive dialogue.

11 - 3 November 1977

SECTION 11 PDR3056

Minimum Dialogue (user responses are underlined):

Prompt

OK,

MINIMUM OPTIONS?

Response

CREATK

YES

FILE NAME?

Remarks

If minimum options is
selected, all index
level keys will have the
same length as the full
key for the last index
level. The primary key
will be stored with the
data and not in the
index entries of the
secondary indices. All
index blocks will default
to a length of 440 words.

[Volume name>UFD Passwd Ldisk]>filename

Volume name>UFD: spec
ifies the name of the
disk and the User File
Directory (UFD) on which
the file is to be
created. Filename is
the user assigned file
name.

NEW FILE?

DIRECT ACCESS?

f YES"!
I NO J

i
NO

If NO, see NOTE 2 at
conclusion of dialogue.

For a new relative file
(goes to dialogue 2)

For a new indexed file
(goes to dialogue 1)

REV. 0 11

PDR3055 MANAGEMENT SYSTEMS

(Dialogue 1) Data Subfile Questions

(PRIME INDEX/RECORD KEY)

Prompt Response

KEY TYPE B

KEY SIZE=: B number

DATA SIZE=: number

Remarks

Number is the number of
bits in the primary key.
It is equal to 8 times
the number of characters
in the key; e.g., 2
characters in a key
= 16 bits. The maximum
size for an indexed file
is 32 characters, or
256 bits.

Number of words for a
data record, where number
equals the record length
divided by 2. For COBOL
programs, this includes
the key size, and a
remainder factor of 1
if it applies.

(SECONDARY INDEX/ALTERNATE RECORD KEYS
each alternate record key.)

Prompt

INDEX NO.?

Response

DUPLICATE KEYS PERMITTED? ? f YES^
ISO J

this section is repeated for

Remarks

The numeric variable is
the number of the
alternate record key.
Carriage return (CR)
will exit from CREATK,
specifying no alter
nate indexes.

Yes allows the data in
this key field to be
duplicated. No indi
cates that if the data
in the key field is
duplicated, the file
will not be updated and
the INVALID KEY clause, or
the USE DECLARATIVE
section will be activated.

11 November 1977

SECTION 11 PDR3056

Prompt

KEY TYPE:

KEY SIZE =

USER DATA SIZE =:

Response

B

B

{&}

(Dialogue 2) Data Subfile Questions

KEY TYPE: B

KEY SIZE =: B number

DATA SIZE =: number

NUMBER OF ENTRIES TO ALLOCATE? number

INDEX NO.? (CR)

Remarks

Enter the number of bits
in the key; use same
formula as for primary
index.

No data may be entered
for secondary keys.
The response must be 0,
(CR), or 0 (CR).
Either option will
return the user to the
prompt INDEX NO? above,
from which he may exit
CREATK, or continue
with alternate key
specifications.

Number is the number of
bits in the relative key;
i.e., characters in the
key X 8. The maximum
size is 6 characters,
or 48 bits. In seq
uential mode with no
key, size must be
specified at maximum: 48.

Number is the number of
words in a data record:
record length v 2 plus
the remainder factor of
1 if it applies.

Number is the number of
entries to allocate in
the new KI/DA file.
Entries are numbered 1-n
inclusive; any reference
outside this range
results in an error.

This concludes template
creation and returns to
command level.

REV. 0 11 - 6

PDR3056 MANAGEMENT SYSTEMS

NOTES:

1. If an invalid response is entered by the user, the question
(prompt) will be repeated.

2. If CREATK is not being run for a new file, and the response
to the prompt NEW FILE? is NO, the succeeding prompt will be:

r ADD

FUNCTION?

MODIFY DATA
PRINT
HELP
FILE
QUIT
USAGE

W
The response options to the FUNCTION prompt have the following
significance:

ADD

Resulting dialogue is similar to the secondary index dialogue,
except that an error message will be generated if the subfile
already exists. The return at the end of the dialogue is to the
prompt, INDEX NO.?

MODIFY DATA

This sequence allows the user to redefine the data. The length of
a data entry may be changed (shorter or longer). It follows the
Data Subfile Section above. At the end of the data dialogue, return
is made to the prompt, INDEX NO.?

PRINT

Results in the prompt: INDEX NO , { ! numeric, 0-17 DATA }
The current configuration of the index subfile or data subfile
given will be displayed on the user's terminal. The configuration
displayed will be that in the file descriptor subfile. At the end
of the display question, the prompt INDEX NO.? will be repeated.

HELP

The currently available options, and their functions, will be listed
in the user's terminal.

11 November 1977

SECTION 11 PDR3056

FILE

This option will allow the user to specify a new working file
without leaving and then re-entering CREATK. The program returns
to the beginning of the dialogue with the prompt, FILE NAME?

QUIT

Exits

USAGE

This option will allow the user to display the number of entries
currently available through any defined index. The number of
entries are displayed as 'ENTRIES INDEXED', 'ENTRIES IN OVERFLOW,
and 'ENTRIES DELETED'. These values are summed to provide
'TOTAL ENTRIES IN FILE'.

This option is of particular significance to the COBOL programmer.
It indicates the state of overflow and helps determine the need
for REMAKE:

REMAKE Program

This program can perform four levels of restructuring:

• Restructure selected secondary indices

• Restructure all indices

• Restructure all indices and data sub-file

• Rewrite file into new file with new template.

The programmer should run REMAKE after substantial numbers of data
entries have been added to or deleted from the file. This restructuring
clears out the index overflow areas (which when overloaded slow the
searching process) and frees for use the space occupied by data
entries flagged as deleted. See PDR 3061 Reference Guide, Multiple
Index Data Access System (MIDAS).

KIDDEL Program

This program will delete all or part of a MIDAS file; the PRIMOS DELETE
command should not be used for indexed files. KIDDEL allows deletion
of:

• Selected secondary indices

• Unwanted segments at the end of the data sub-file

• The entire file

REV. 0 11

PDR3056 MANAGEMENT SYSTEMS

An example of an actual CREATK dialogue for sample program REF2 appears
at the close of Section 16.

Complete information on programs outlined above, and KBUILD and REPAIR is
presented in the Reference Guide, Multiple Index Data Access System
(MIDAS) PDR 3061.

DBMS

For complete information relating to COBOL interface to Database
Management System (DBMS), the user is referred to IDR 3046, COBOL
Reference Guide to DBMS.

FORMS

The Prime Forms Management System (FORMS) provides a convenient and
natural method of defining a form in a language specifically designed
for such a purpose. These forms may then be implemented by any
applications program which uses Prime's Input-Output Control System
(IOCS), including programs written in COBOL. Applications programs
communicate with FORMS through input/output statements native to the
host language. Programs which currently run in an interactive mode
can easily be converted to use FORMS. See PTU 45 and IDR 3040, Forms
Management System (FORMS).

OTHER PROGRAMMING LANGUAGES

The reader is directed to Section 17, Inter-Program Communication.

11 - 9 November 1977

P A R T IV

R E F E R E N C E

C O B O L C O N C E P T S

REFERENCE

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

SECTION 12

FUNDAMENTAL CONCEPTS OF COBOL

DIVISIONS OF A COBOL PROGRAM: A SUMMARY

Every COBOL program consists of four divisions: Identification Division,
Environment Division, Data Division, and Procedure Division.

• The Identification Division assigns a name to the program and allows
the programmer to enter other documentary information, such as the
programmer's name, the date the program was written, and so on.

• The Environment Division specifies a standard method of expressing
those aspects of a data-processing problem which depend upon the
physical characteristics of a specific computer.

Two sections make up the Environment Division; the Configuration Section
and the Input-Output Section.

The Configuration Section describes the computer configuration on which
the source program is compiled, and the configuration on which the com
piled program is to be run. It also relates system names used by the
compiler to names introduced by the programmer in the source program.

The Input/Output Section contains the information needed to control
transmission and handling of data between external media and the pro
gram. This section describes the name, type of organization, and access
mode of each data file, and associates the file with a peripheral device.

• The Data Division provides the compiler with a detailed description of
the characteristics of every data item used within the program. There
are three sections of the Data Division: the File Section, the Working-
Storage Section and the Linkage Section.

The File Section describes the structure of data files. Each file is
defined by a File Description entry and one or more Record Description
entries.

The Working-Storage Section describes records and noncontiguous data
items which are not part of external files, but are developed and pro
cessed internally. It also defines data items whose values do not change
during the execution of the program (i.e., constants).

The Linkage Section of a COBOL program is meaningful only in a called
program. This section, appearing in the called program, describes data
items which may be referred to by both the called and calling programs.

12 - 1 November 1977

SECTION 12 PDR3056

• The Procedure Division contains instructions (COBOL statements)
required to solve a data processing problem.

This division contains two sections: declarative sections and
procedural sections.

Declarative sections are optional. When used, they must be grouped
at the beginning of the Procedure Division. Declarative sections
permit the execution of procedures which are not performed in the
regular sequence of coding. Such out of sequence procedures are
usually initiated by a condition which the program does not test
directly.

Procedural sections follow declaratives in a logical sequence. Each
procedural section comprises one or more paragraphs. Each paragraph
consists of one or more COBOL sentences. Sentences, in turn, are
comprised of one or more COBOL statements.

Execution of the procedures in the Procedure Division begins with
the first statement in the division, excluding declaratives. State
ments are executed in the order in which they are presented for com
pletion, unless the rules indicate an exception.

The Procedure Division ends at that point in the source program after
which no further procedures appear. This coincides with the physical
end in the program.

REV. 0 12

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

The following skeletal coding defines program component structure and
order:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR, comment-entry...]

[INSTALLATION, comment-entry...]

[DATE-WRITTEN, comment-entry...]

[DATE-COMPILED, comment-entry...]

[SECURITY, comment-entry...]

[REMARKS, comment-entry...]

[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE COMPUTER, entry.]

[OBJECT COMPUTER, entry.]

[SPECIAL-NAMES, entry.]]

[INPUT-OUTPUT SECTION.

FILE CONTROL, entry...

[I-0-CONTROL, entry...]]]

DATA DIVISION.

[FILE SECTION.

[file description entry

record description entry ...]...]

[WORKING-STORAGE SECTION.

[data item description entry]...]

[LINKAGE SECTION.

[data item description entry]...]

PROCEDURE DIVISION [USING identifier-1...].

[DECLARATIVES.

{section-name SECTION, use-sentence.}

[paragraph-name, [s e n t e n c e] . . .] . . .

END DECLARATIVES.]

[section-name SECTION.]

{paragraph-name, [sentence]...}...

12 - 3 November 1977

SECTION 12 PDR3056

The source program on the following pages, SAMPLE, illustrates program
component structure and order. SAMPLE creates and reads a relative file
sequentially.

A Listing File for SAMPLE is provided after the source program coding
example. SAMPLE was compiled in 64R mode.

REV. 0 1 2 - 4

ZZ6I -iaquiaAON S - Z\

! 1 I : i M I !
I i M 1

i | !j
M I1 !

I I I ! i i
! ; : i ' | , j ,

! 1 | i i ' i ! | !
i i l i ' I I I

T T T • I T ^ T T T - |
j M ' I 1

1 1 1 1 1

! > ' 1 !

ll M i H | !
1 ! ! I ! 1 i i i J

fflfiUJ i o jiryillA \
i ! 1 l .

! ! | j | i j ! 1
i ! 1 (1 ! 1 ! ;
1 1 ' ' 1 1

| i ! . i 1 ! ! ! ! |
; ! i , 1 i 1 i

! | |

! !' ! i 1 1 | ! H '
i i i !
! i l i :

i i
I I ! i

] , i I . | i i | i
! • | i l ! i ! i i i
I i I i i • i ! i ; ! i '

MM M 1 M 1 ! 1 i
' • i M i ' i '
i • i i . i_ —!—:—' •——1 r——- —r —1—' • t

! j ! M \ I I 1 | j : 11 , floratfziNu
i M ! M : :

i i ; i i i I

^\\\ I I v i ;
M M i | M

M l ! Mi ! I
! | | Mi ! 1

1 ! ' •

1 • 1
—I—r— •—r~ i

ll, MM; Mi h pi |
• i i !

i 1 | i l i i
! M l

1 ; i 1
i ! i i a w k - A U *
i l i ' i !

i i * i
T T T T M" i i 1 1 i , ,i..
ZL 89 fr9 0 9 9 5

1 M l | M
1 i |

! ! I M
!

i !
1 i ' i

1 ' '
i I i ' i
i l | l 1

i [| | - t
1 ; i l ' k
! I ! i
1 1! i
i l l :

1 ! I ! :
jswoknitusl a
titLi

\ '
1 RT3IWW

! | 1 t 1 ! * (
' i

1 ' i

1 1
• ^TaatL

I 1
i i

1 T 17
i l i :

i i I ! ! '

1 ,1 1
1, 1, J i
1 1 1 1 1

i i '

l l i ' I '
I i 1 L

i M \<*z.
1 ! Mi i i i i 1 1 1

.' ' i
i i
! 1 i
i 1 1 1 j j

i
i i

i i i
i i i

1 T !
o3ai w ?««
LT:T 1

i

1

M ! 11
1 ! |-(J0l)
^ O I E T

11'^pp
•> • c*L>i> 1 i ' CfXL>l>

1 \'\t£ys
^T^Cw
5 0 x " W
StplX DlkJ

! i i
1 1 I

i ! • I
' ! ' !
1 : Ml aw, sqtyof;
i I A M
I l ' , V » ^

U S 32I|V
£tOx pi<
ps>x jbtad

1 '#!X ;>jlj<

Ui --U
K l t T ^)

X l̂tfjp! 3BTV
j
i | |

j 1
I i

1

• gy> iw, is
: i n «w
- 1 ' 1
o j _ f ^

• w i d k

LL|M;i;a<v| |D1
]

i ;

i i i 7
1

1 1 :

1 1 :
1 1

! 1
! i :

j i

i i !
i !

1 i

1 M l | |
. j33iUT>|Iid
3|3ihjJ.oil^|

. banipfijA
k ia^ihibild
l bi^.Tljipilid
c [3»jnj.p>[li*
(!3.*nruraiid
* i i3iU^I-ii
t j iaWvH-

M ! M
i i-gtyora

1 I'L'SllW
Mi Ml

>3 3, n3 0lW,T
t ja^n ib i id
IOjNX\ s^T
saapaja i

s i bwia
1 i J H I i ar>|d

M i l i i |
! , 1 I i

i apM-ojl*
da^pDaa

1 i
i

i i

! i i

? - 3,lfE i| &£
13 0035 pil
~ 1 , !¥j3

?5v| j3^!4i-
L Nl^ISSVi

. INî ixsidv

::ir:rL
i i i 1

\l\L S.L a 1

i '1*H
1 *|3]H

i i i i#ifi
1 ' M*
I i •
i i , i i •

I ' lAnyXi
1 1 1

1

_.1TT T ._i_:Bffi

IJ
t*3

o^ra
!)J3

1 1

i » I 3

S 9 3

i |JJ!3

^STl i
j-is'wn

i 1 '
3|«i-,A

vhu:
, | 3 1 I

1' "
1 r |3,-5

^iT^
lf3«'«

i»3j-J.
NCE-JL

L^-3

IT"n>
•3f

n!3|B:V

1 I

; i
1 i !
i ' i

S i h j .

3 ^ 0

XWH3
K|3]0tt

1—;—

3 ! l t [| d

• l
MOJIJ.

OSJNO

m\
1\M
OJlJi-!^
^pfLf^

T
jn|3n|g
1 ^ 5 . 0

•J3NII
L>:"'

smi

\ i '
TTTTJ

^vpHSd
^ ? | d
ALlJi-D

ipj jJ
Ji4!av
TTlJ3"

/ i IC0
\Q$

3\H\)\li
^[ll-D

^ 1 fej
J l l 3 ^

IflHX
*WJ.\'
1IXd|

1 1*13
i*m&
r»fx|̂ j<k
np:4
H^fL
xil-jx
ll ri3

! I ! "
11> i

1 !
1

! I

b»!±Si
* i '

W 9 9
oVfSX

'—' rs—

-IQ|3«
-l iSjI
i : r

f'X
J >

\wl
3;H |f
llM,tt

1

r »d| fS
^ ! #

, i

<*; |Tio

1 '
z<b

\ $

i IZ,9
^

: w
1 ,T<?

l lj>
1 I i

i

i { #
3i^<t
3N^O
%j «X
^JOJ.0

a^|WD

i p 3
i ; id-

' t *
! z t
1 Ti^

?m&
H^^id

ib | j r
^lOJiL

ojipji
1 1

1 | !

I '
3Md
3pPiV

1 , ;

a. ±->
0 JT3

i J.D
T o y X

x n r f j .

3^l^jN
Oc^NP

oidlw,^

oxiw
ix!r*3
' i i
1 I !

-Li I
xlwii
f̂ lOJILi

i ip«'-»

• k l
4HVP

1 I ! i M i
Mi

V l M |
T i l !

1 1
1 1 1 1 1

1 1 1 ! !
I M I
> i ' i

i M ,
i M ' i M
I I M ' M
! iTVji 1

" I ' M
M i l

3toff| , 0 4
\tfii \ : .

mwA| | i j

aawDj i <rj
! i ! 1

I ; i i i >

W| 11 j
i ;ip[{ i

J - ^ J ^ I i «i4

9!3B! ^ | I , d

i ! ! 1 i |

1 II ; M
' l ! 1 f \

1 1 ' ^
: ' ' M ' i * i 1 1 1 1

11 » ! ! • :
3 H 3 9 ;

1—1—1—.

3^3s{ • 1

3"ii3s i :]

rnop-3r»|XB
n,o-n^d|>i3

-iwibads
^-J.^JJ^O
o-arap|np!5

w&kmp
H^oajXA

i ! : i

; i l l

"?
I 1
1

T i l | |

•isftaJYjujaili
ttlfllB^SlWl
- N i V W ^ i d
3jddjir«j3(lqp:

2S 8 f ff 0* 9£ 2£ 82 t>2 02 91 211 8 .
1 j

4 U S L U 3 4 D 4 S " I O S C O SI V

f^-"]
1 ' j

1
1 \
1

'OiZ

6 i l
i

8 1

ZiL

19 I

S ' l

i r j i
iC'L

3 I

• l 1

0,1

6 0

j 8 0

,Z'0

|9|0

1 1

IfflO

T I O

EjO

j 3 | 0

. j i jo
r i

t i
t '

0 3

6 I

8 1

L I

9 | l

5,1

i ' l
!C I

|3 1

Mi
lOU

'6 ,0

i 8,0

lh iz.o
^ 9,o

,'fflo
f 0

je o
I 2 ! 0

Mo
! i . 9 *

—«

' i
' i l
i

1 !

, I
1

1

1 1

i
1

1

— * L

1

1
1 !

I

T < '
1 i

. !

-

7*f

1 !

—-*-*—
! 1

1
1

1 !

1

(1
|

1

i i

I
> L

5 aousnbsj

10903 dO Sld3DN0D TVINHIWamd 9S0£tfdd

file:///tfii

SECTION 12 PDR3056

ft,
Sequence \
i not)
1 3

I 1

1

| 1
i ;

i '
i

1
i

i
l .1.

(SEMI.) "•
4 6 -

oh I
0,2!

1'8,
1

l|9l

2|0|

i

1

f
i

i 1

h i: \

i

i

r
i

i

1 :

| 1

!
1

1

1 1

1 i

... i

1 !
! 1

1

i !

}
I

1

! 1

i i
1

! i

1 J

, j 2 ! ,|

1 3

1 4i

15

1 6

17

1 8|

i ?|

20

!

i

ojii
0.|2l

0J3J
0I4J
0'i5|

016

0 7 |

0i8

019,

1,0.

mi
1 2'

1:3,

mi
115'

1 6'
1

1 7

i s !
, I 9 I

201
1
1

1

|

l • *
1 1 *

; A IB
•

C O B O L Sfa t e m e n f Jk
1 ' 8 il2 16 20 24 28 32 36 40 44 48 52 56 60 64 68

1 1

' 1
AW-
Tim!

I : ! 101! J
Mini!
! I l ,

' 1
! 1 ' ! ' '

1 ! ,

1

1 1

1 !
!
t

f i : ! ! ,
f i : 111 ;

_ ? ^ J £ J ^
$!EG-I]kJ St
CeO(TP!-F

' , !<3PPK
1 ! 1 \OQ€\

i : 1S11
KEAfcl-to

' 1 1 leieiflit
| 1 M !

1 iHov e
1

1 I

!
4#fc

mil
i . i |W|RIT

M i l l
. : jGjo! rr

LlTsTl-iDlk
! |C!L(O|S

1 tofrisjp
1 ' \OP£A

I 1 |FEi«'M
Llftisfri 5 FC
ClLlc^-'Ail

1 | , iCLOlS
! i fe?j<

!
L i f t

1

\ST.6l
Ul

Mftllh
etflftj-Uiex

1 ! iRE'fyJr
1 .. \ ! i i !
i i 1 l^okiiE

lii GET
' t-'al "

ur&trl-ibio^
i ! £xiin

k !] i i
* I i 1 i 1 '

I I !

fiiuk
rtirnib
fit i
if 21 !
m l

&i .
iii]'
* i
2ll7l

1
i 1 •

: 1
Ej t)'I
:cno
nuel.
Ljoiurr
_HM^
wto

X. \
> < !«
L3jsrr

: dptf

e |?|R
•e lb lE

mm
H N e
EfcTO
Ej |CA
UAIYI
IMP

okm
T I M
.li.l
>Ej iD|I

'Wl
: 'fiju|d

i 1

• F if'^

H-btr
> Mrs
So. T
; W
E 'F*

i o iRE
ICi.i .

H ! 1

.JLl i

«|<vN sfc
- shiATiu
E^l-i
tfliL! Pll

h'21,1 ph
FlLJL£J/i

* 3 | J ^ 3
FiiLLet
itij ' EJ

1 I !
i !

tflESTfck
MJ.I j

! i j
Purr1 Lfi
uiTi CA!«
E" PlRTK

M i l
bi-lfilldi
-DIIKEC
tVi;Mrt!f
kj-jl'MAk
I[IJT-L]I
îeEiolK

L B / NJ5
Aiti-^eS
3L 1
RiJ)-!F3JL
"eMo IT
UTi iblK
LXISIT jT

• ' 1 i
i 1 1

KlscfrdR
V I G ^ T

!'
| 1

ryii- is
£:E£3:ajg
eclTjoeK
w i j is i
e crtlo R!N
TKITI- La
'A j^ ' f ix

i 1 1
i n 1

1

' 1 i :
1 1 1 !

i iriUil-
ils!, hPiUciliSE

1 i : 1 i ! ! '
idri^fl)i^)
i}\ mckmd
:C!TU|B^ VI(I4|>
?J PiUCTtfGq
dcjTul̂ E xkqp
!;; PidTde^
COJT'illflCl xl<T"S"J

U- ! -LXJ_
! i : 1
LLH "T"
i 1 I 1

"sr r - iF i iLE t>fl
W-p!iJLk - X
XT- LlKiE Rfif l

M M!
i '*Tf e[K'd irJc
.)Toe!Y.| j ! i
JF! TJo| P eJTlhJT
^ i ^ j j i ^ s k
S i T F
JYi- ĵecogf) r
Itv/jv#\lL 1 D Key
r, T

I
e1. biUcTfc

lE^ST TjO c « e
leric raw- pr v.
jvl^u; LlST!-p

: !
i !

1 • ' i i :.iy,-riJLEj tgr
IGSTI 'SiEQaie/v

M- u ^ ff hr
JKJC F^OM IllC
jvi-eiGciofc'd.j
'1-pXLJE! d£t
st-boiviei. i !
iJRe^doe^ nro
IhJg .| : _
.TT- bjrii? Echrio|€

i
1 1

1 ; 1

! 1 I I 1

i
u i ^ i J !

, MLide
^ T ^ j i :\J
.1 iv/rVLuiE!
^(2,01,1 y
j VALUE!
v<faT> 3: 'VIA
, iVAL(/!Ei
,, y i 1

! ! i H __L
1 i :

! i !
^ECrroRy1-

T t r

M jaEAliEfi
; 1 !

1 j
¥0 1 f !

1 nr _ |

1

-LTKG.
ifolRY- î EC

•••-"• '
KiALlJ>~t
'. T 1

j i
«Yi-FrLGT.
f\r\e pi\L\£

M 1
O i / ^ E . ! ,

!

S^-FJJL^.
rzu e!e|A

1
1 !

rtk^iR AFiT

i i kecioleitj
1 1 II i l |

^ITKJT-L
! i i

Y-^ECjOldt)
1 1

1

"1
1 11 i

1 M M
VIrt dOGlTlb SiPifltG-, I I i l l 1 i

Ml 1 ; ! 11 ! M Mi
Tî l % ^ r i f l l J i ' 1 I II 1
AiLUF Tffil 5lFi*C€l.l 1 :^ IN 1 1 '
r s ^sTjCFFir^. i , i 1 , i
m\U£ TJS SPAO 4". I ! '
r^ ^diTTv'L! ! i i i
LUIF] lis isptofce-. i M| 111
i d ^Waud'Ll 1 Ml

• 1 ! '! j I I I , 1] 1
| 1 I | | ' j 1 1 ! l |

M i M M
1 i • • 1 1 J '

• m i ' : l M"
m : i ! l 1.

d u e ! M i l I I M 1 ! it
M l ! M| i-l

AFTE« JAb'i/'A^cliklq iMJs-e; 1 !
I M i i j M i l l 1!

I l l | ! ! 1 -! 1 i |
, i i ; [. | 1 ; : 1 1

1 1 11 1 I ' M L
di l l), i 1 M l 1.

iv x "i " T I T 1 1 i
— —1 1—1 — 1 — — — 1 1 —

1 1 1

I 1 i M !
'!. ! 1 1

1 l ! : M ^
l | I M 1 i 11 1

— T 1 — ' \-J, i—1 1 — I — ; !—1 r— 1 —

1 ' M 1 1 • i 1 1
1 | i ! - j ! i j , !|

11 \ ! M M ; M l
b rtfTTG^ A, STAe^ ' . , I l l i j

1M 1 i i M M
11 \ M l MM M |

"CR lAbiVAkicUE^ ^A!CE., 1 1 | i
: I | 1 1 | i i | | : !

. Arr- |g}Mh M l 1 M I (!
i 1 MM 1 l M i l I

iKJer. ' M i ' ! i i ! ! 1 1
MM M l i i | | ! ! i 1 ! i
1 M M ' 1 ' i '
' : i i i M i i 1 ! : '•

i j j i •
1 • ! M i i • i i i ! • M M

M i l 1 i I' M! Ml
M l M 1 I I I i M . 111

REV. 0 1 2 - 6

file:///ST.6l

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

REV 14
(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0001)
(0008)
(0009)
(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
(0019)
(0020)
(0021)
(0022)
(0023)
(0024)
(0025)
(0026)
(0027)
(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(0050)
(0051)
(0052)
(0053)

COBOL SOURCE FILE: SAMPLE 08/18/77 10:23
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
INSTALLATION. PRIME.
REMARKS. THIS PROGRAM CREATES AND READS A RELATIVE FILE

SEQUENTIALLY.
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
SPECIAL-NAMES. CONSOLE IS TTY.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LIST-FILE ASSIGN TO PRINTER.
SELECT CARD-FILE ASSIGN TO PFMS.
SELECT DIRECTORY-FILE ASSIGN TO PFMS, ORGANIZATION

RELATIVE
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD LIST-FILE, LABEL RECORDS ARE OMITTED.

01 PRINT-LINE, PICTURE X(121) .
01 PRINT-REC.

02 FILLER PIC X.
02 PRINT-INPUT PIC X(80).
02 PRINT-ERROR PIC X(40)

CARD-FILE, LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'INDATA'.
01 CARD-IMAGE, PICTURE X(80).
DIRECTORY-FILE, LABEL RECORDS ARE STANDARD, VALUE OF FILE-ID

IS 'REFILE'
OWNER IS 'LDAVLS'.

01 DIRECTORY-RECORD.
02 NAME.

03 LAST-NAME
03 FIRST-NAME

02 FILLER
02 ADDRESS
02 FILLER
02 CITY
02 FILLER
02 PHONE-NO
02 FILLER

FD

FD

PIC X(15).
PIC X(15).

PICTURE X(l) .
PICTURE X(25).
PICTURE X(l).
PICTURE X(4) .
PICTURE X(3).
PICTURE 9(7).
PICTURE X(9) .

WORKING-STORAGE SECTION.
77 FILE-STATUS, PICTURE X(2), VALUE IS SPACE.
01 HEADER.

02 HI, PICTURE X(4), VALUE IS 'NAME1.
02 FILLER, PICTURE X(27), VALUE IS SPACE.
02 H2, PICTURE X(6), VALUE IS 'STREET1.
02 FILLER, PICTURE X(20), VALUE IS SPACE.

12 November 1977

SECTION 12 PDR3056

REV 14 COBOL
(0054)
(0055)
(0056)
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)
(0063)
(0064)
(0065)
(0066)
(0067)
(0068)
(0069)
(0070)
(0071)
(0072)
(0073)
(0074)
(0075)
(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)
(0084)
(0085)
(0086)
(0087)
(0088)
(0089)
(0090)
(0091)
(0092)
(0093)
(0094)
(0095)

SOURCE FILE:
02
02
02

SAMPLE 08/18/77 10:23
H3, PICTURE X(4), VALUE IS 'CITY'.
FILLER, PICTURE X(3), VALUE IS SPACE.
H4 PICTURE X(5), VALUE IS 'PHONE'.

PROCEDURE DIVISION.
BEGIN SECTION.
CREATE-FILE.

OPEN OUTPUT LIST-FILE DIRECTORY-FILE.
OPEN INPUT CARD-FILE.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
READ-NEXT.

READ CARD-FILE AT END GO TO
LIST-DIRECTORY.

MOVE CARD-IMAGE TO PRINT-LINE.
MOVE CARD-IMAGE TO DIRECTORY-RECORD.
WRITE PRINT-LINE.
WRITE DIRECTORY-RECORD INVALID KEY

DISPLAY 'INVALID KEY'.
GO TO READ-NEXT.

LIST-DIRECTORY.
CLOSE CARD-FILE, DIRECTORY-FILE.
DISPLAY 'END TEST TO CREATE FILE'.
OPEN INPUT DIRECTORY-FILE.
PERFORM LIST THRU LIST-DONE.

LAST-SECTION.
CLOSE-ALL.

CLOSE DIRECTORY-FILE, LIST-FILE.
DISPLAY 'END TEST SEQUENTIAL READ AFTER A START' .
STOP RUN.

LIST.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT-DIRECTORY-RECORD.
READ DIRECTORY-FILE NEXT RECORD, AT END

GO TO LIST-DONE.
MOVE DIRECTORY-RECORD TO PRINT-LINE.
WRITE PRINT-LINE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST-DONE.
EXIT.

0000 ERRORS 0000 WARNINGS (COBOL VER 04)

REV. 0 12

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

LANGUAGE CONSIDERATIONS

Format Notation

Throughout this document, basic formats are prescribed for various
clauses or statements. These generalized descriptions guide the
programmer in writing his own statements. They are presented in a
uniform system of notation:

1. All words printed entirely in capital letters are Reserved
Words. These are words which have preassigned meanings. In all
formats, words in capital letters represent an actual occurrence
of those words.

2. All underlined reserved words are required unless the portion
of the format containing them is itself optional. These are key
words. If any key word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved Words not under
lined may be included or omitted at the option of the programmer.
These words are optional words; they are used solely for improving
readability of the program.

3. The characters <, >, and = when appearing in formats, although
not underlined, are required when such formats are used.

4. All punctuation and other special characters represent the
actual occurrence of those characters. Punctuation is essential
where it is shown. Additional punctuation can be inserted, accord
ing to the rules for punctuation specified in this publication.
In general, terminal periods are shown in formats in the manual
because they are required; semicolons and commas are not shown
generally because they are optional.

5. Words printed in lower-case letters in formats represent generic
parts (e.g., data-names) of which a valid representation must appear.

6. Parts of a statement or Data Description entry which are enclosed
in brackets [] are optional. Parts between matching braces ({ })
represent a choice of mutually exclusive options, of which one must
be chosen. When brackets or braces enclose a portion of a format,
but only one possibility is shown, the function of the brackets or
braces is to delimit that portion of the format to which a following
ellipses applies.

7. Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement". These designate clauses
or statements which are described in other formats in appropriate
sections of the text.

8. In order to facilitate reference to them in the text, some lower
case words are followed by a hyphen and a digit or letter. This mod
ification does not change the syntactical definition of the word.

1 2 - 9 November 1977

SECTION 12 PDR3056

9. The ellipsis (...) indicates that the immediately preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words and
one or more Reserved Words enclosed in brackets or braces. If a term
is enclosed in brackets or braces, the entire unit of which it is part
must be repeated when repetition is specified.

10. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
manual.

11. Multiple formats for a given COBOL verb are mutually exclusive op
tions, of which only one may be chosen.

Punctuation Rules

The following general rules of punctuation apply in writing source programs:

1. A period, semicolon, or comma, when used, can not be preceded
by a space, but must be followed by a space.

2. A left parenthesis can not be followed immediately by a space;
a right parenthesis can not be preceded immediately by a space.

3. At least one space must appear between two successive words
and/or literals. Two or more successive spaces are treated as a
single space, except in non-numeric literals.

4. Relation characters should always be preceded by a space and
followed by another space.

5. When the period, comma, plus, or minus characters are used in
the PICTURE clause, they are governed solely by rules for report
items.

6. A comma may be used as a separator between successive operands
of a statement, or between two subscripts.

7. A semicolon or comma may be used to separate a series of state
ments or clauses.

Coding Rules

Since Prime COBOL is a subset of American National Standards Institute (ANSI)
COBOL, programs are written on standard COBOL coding sheets (Figure 12-1).
The following rules are applicable:

1. Each line of code should have a six-digit sequence number in posi
tions 1-6, such that the source statements are in ascending order.
Blanks are also permitted in positions 1-6.

REV. 0 1 2 - 1 0

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

2. Reserved Words for division, section, and paragraph headers
must begin in the A Area (positions 8-11). Procedure-names must
also appear in the A Area (at the point where they are defined).
Level numbers may appear in the A Area.

3. All other program elements must be confined to positions 12-72,
governed by the other rules of statement punctuation.

4. Positions 73-80 are ignored by the compiler. Frequently, these
positions are used to contain the program identification.

5. Position 7 is used for special coding symbols. Explanatory
comments may be inserted on any line within a source program by
placing an asterisk (*) in position 7 of the line. Any combination
of characters may be included in the A and B Areas of that line.
The asterisk and the characters will be produced on the source list
ing but serve no other purpose. If a slash (/) appears in position
7, the next line will be printed at the top of a new page when the
compiler lists the program. A hyphen (-) is used to continue a non-
numeric literal from one line to another. Refer to Non-Numeric
Literals for coding rules.

7 , 8--II

B AREA I COMMENTS

12- 72 73 80,

Figure 12-1. Standard COBOL Coding Sheets

Prime Character Set

The standard character set utilized by Prime is the ANSI, ASCII, 7-bit
character set. The entire set of characters, with octal, hexadecimal,
and punched card equivalents, is presented in Appendix E.

12 11 November 1977

SECTION 12 PDR3056

Collating Sequence

Each character in the Prime character set has a unique octal value
which establishes the collating sequence for the character set. This
sequence conforms to the America Standards Code for Information Inter
change (ASCII). The characters in Appendix E, the ASCII Character
Set, are arranged in ascending order from top to bottom.

LANGUAGE SPECIFICATIONS

COBOL Character Set

The standard COBOL language character set utilizes 52 characters as
follows: The numbers 0 through 9, the 26 uppercase letters of the English
alphabet, the space (blank), and 14 special characters. (A fifteenth
special character, the apostrophe, is used by Prime COBOL as an alternate
for the quotation mark). The complete COBOL character set is illustrated
in Figure 12-2. An outline of Prime COBOL symbol usage is given in
Appendix F.

The individual characters of the COBOL language are the basic units used
to form the major elements of COBOL, i.e., character-strings, separators,
words, statements, sentences, paragraphs, sections.

Character Strings

A character-string is a character or a sequence of contiguous characters
which forms a COBOL word, a literal, a PICTURE character-string, or a
comment-entry. A character-string is delimited by separators.

Picture Character-Strings

A PICTURE character-string consists of certain combinations of characters
in the COBOL character set used as symbols. See Data Division, PICTURE
for a description of the PICTURE character-string and the rules governing
its use. A punctuation character which is part of the specification of
a PICTURE character-string is not considered as a punctuation character,
but as a symbol in that PICTURE character-string.

Word Formation

A COBOL word is a character-string of not more than 30 characters chosen
from the following set of 37 characters:

0 through 9 (digits)
A through Z (letters)
- (hyphen)

REV. 0 1 2 - 1 2

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

A word must begin with a letter; it may not end with a hyphen. A word
is ended by a space, or by proper punctuation. A word may contain more
than one embedded hyphen; consecutive embedded hyphens are also permitted.

All words are either Reserved Words or programmer-defined words.

If a programmer-de fined word is not unique, there must be a unique method
of reference to it by use of name qualifiers, e.g., TAX-RATE IN STATE-
TABLE. Primarily, a non-reserved word identifies a data item or field,
and is called a data-name. Other cases of non-reserved words are file
names, condition-names, mnemonic-names.

Paragraph-name and section-name are programmer-defined words which are
not required to begin with an alphabetic character.

12 - 13 November 1977

SECTION 12 PDR3056

CLASS

alpha
numeric

numeric

alphabetic

<

special 4
diaracters

CHARACTER

[-0, 1 , , . , 9

1 figurative
I constants

' A , B , . . , Z

space

figurative
constants

r +

-

*

=

$

r

»

it

i

(

)

>

<

/

figurative <
•• c o n s t a n t

fLOW-VALUE (s)
^ZERO,ZEROS,ZEROES

/SPACE(s)

fQuarE(s)
HICH-VALUE(s)

Figure 12-2

MEANING

dig i t

value (nul)
value (zero)

l e t t e r

blank

value (blank)

plus sign

minus sign

asterisk

equal sign

currency sign

comma

semicolon

pei'iod

quotation mark

apostrophe (quotation mark
substi tution)

l e f t parenthesis

r ight parenthesis

greater-than

less-than

virgule (slash)

value (quotation)

value (delete)

. COBOL CHARACTERS

SPECIAL USAGE

COBOL word formation

figurative constant
figurative constant

COBOL word formation

punctuation

figurative constant

sign symbol/arithmetic/editing

sign symbol/arithmetic/coding
symbol/editing/COBOL word format5

coding symbol/arithmetic/editing

ar i thmet ic / re la t ion tes t s /ed i t ing

edi t ing

punctuation/editing

punctuation

punctuation

punctuation

punctuation

punctuation

punctuation

re la t ion t e s t s

re la t ion t e s t s

ari thmetic/edit ing/coding symbol

figurative constant

figurative constant

NOTE: When the figurative constant LOW-VALUES is used with binary
data, it is interpreted as numeric. In all other instances, it is
interpreted as alphanumeric.

REV. 0 12 14

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Reserved Words

A Reserved Word is one of a specified list of words which may be used
in COBOL source programs, but which may not appear as programmer-
defined words. They may only be used as specified in the general
formats.

The types of Reserved Words are:

Key words
Optional words
Connectives
Figurative constants
Special-character words

• Key Words

A key word is one whose presence is required when the statement in
which the word appears is used in a source program. Within each
statement, such words are uppercase and underlined.

• Optional Words

Within each format, uppercase words which are not underlined are
called optional words; i.e., they may appear at the user's option.
The presence or absence of an optional word does not alter the
meaning of the COBOL program in which it appears, but is required
as written when used.

• Connectives

The three types of connectives are:

1. Qualifier-connectives used to associate a data-name, condition-
name, text-name, or paragraph-name with its qualifier: OF, IN

2. Series connectives which may be used to link two or more con
secutive operands: , (comma) or ; (semicolon)

3. Logical connectives used in the formation of conditions:
AND, OR

• Figurative Constants

Figurative constants are Reserved Words used to name and reference
specific constant values. A figurative constant represents as many
instances of the associated character as are required in the context
of the statement.

The singular and plural forms are equivalent and may be used inter
changeably.

12 - 15 November 1977

SECTION 12 PDR3056

A figurative constant may be used wherever "literal" appears in a
format description; except that, whenever the literal is restricted
to numeric characters, the only figurative constant permitted is
ZERO (ZEROS, ZEROES). A figurative constant must not be bounded
by quotation marks.

Values, and the Reserved Words used to reference them are:

ZERO
ZEROS
ZEROES

LOW-VALUE
LOW-VALUES

the ASCII character represented by Octal 260

the character whose Octal representation is 000

HIGH VALUE = ^he character whose Octal representation is 377
HIGH-VALUES

^——— = the quotation mark, whose Octal representation
QUOTES is 2 4 2

SPACE
SPACES

the blank character represented by Octal 240

NOTE: ALL literal is not currently available.

Special-Character Words

The arithmetic operators and relation characters are Reserved Words
They comprise the following:

OPERATORS

Arithmetic:

+

*

/

Relation:

<
>

MEANING

Addition
Subtraction
Multiplication
Division

is equal to
is less than
is greater than

Table 12-1. Special-Character Words:
Arithmetic Operators/Relation Characters

REV. 0 12 16

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Programmer-Defined Words

A programmer-defined word is one supplied by the user to satisfy the
format of a clause or statement. Each is constructed according to the
rules for WORD FORMATION. The categories for programmer-defined words
include:

Level-numbers
Data-names
File-names
Condition-names
Mnemonic-names
Paragraph-names
Section-names

t Level Numbers

For the purposes of processing, the contents of a file are divided
into logical records. The level concept is inherent in the structure
of a logical record, in that it allows the specification of record
subdivisions for the purpose of data reference.

Once a subdivision is specified, it may be further subdivided to
permit more detailed data referral. The most basic subdivision of
a record, that which cannot be further subdivided, is an elementary
item. Data items which contain subdivisions are known as group items.

Level numbers are one or two character, programmer-definded words. .All
level-numbers are numeric. They group items within the data hier
archy of the Record Description. Since records are the most inclusive
data items, level-numbers for records begin at 01.

Less inclusive groups are assigned numerically higher level-numbers.
Level-numbers of items within groups need not be consecutive. A
group whose level is 02 includes all groups and elementary items
described under it until a level number less than or equal to 02
is encountered.

Separate entries are written in the source program for each level.
The range of levels is 01 through 30. 1 through 9 may be written as
single numbers.

Level numbers 77 and 88 are used in certain applications and are
defined together with additional level-number information in Section
15, DATA DIVISION.

A weekly timecard record illustrates the level concept. It is divided
into four major items: name, employee-number, date, and hours, with
more specific information appearing for name and data.

12 - 17 November 1977

SECTION 12 PDR3056

TIME CARD

NAME

EMPLOYEE NUM

DATE

HOURS WORKED

LAST NAME
FIRST-
MIDDLE

INIT
-INIT

MONTH
DAY
YEAR

The timecard record might be described (in part) by Data Division
entries having the following level-numbers, data names, and picture
definitions:

01 TIME-CARD.
02 NAME.
03 LAST-NAME
03 FIRST-INIT
03 MIDDLE-INIT

02 EMPLOYEE-NUM
02 DATE
03 MONTH
03 DAY
03 YEAR

02 HOURS-WORKED

PICTURE X(18).
PICTURE X.
PICTURE X.

PICTURE 99999.

PIC 99.
PIC 99.
PIC 99.

PICTURE 99V9

Data-names

In the preceding timecard example, TIME CARD, NAME, LAST NAME,
FIRST-INIT., etc. are data-names supplied by the programmer.

A data-name is a word assigned by the user to identify a data item
used in a program. A data-name always refers to a field of data,
not to a particular value.

A data-name is formulated according to the rules for WORD FORMATION;
it must begin with an alphabetic character.

A data-name or the Key Word FILLER must be the first word following
the level-number in each Record Description entry, as shown in the
following general format:

level data-name
FILLER

REV. 0 12 - 18

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

This data-name is the defining name of the entry. It is the means
by which references to the associated data area (containing the
value of a data item) are made.

If some of the characters in a record are not used in the processing
steps of a program, then the data description for these characters
need not include a data-name. In this case, FILLER is written in
lieu of a data-name after the level number. FILLER can be used
only at the elementary level; ANSI standards do not permit its use
at a group level.

File-names

A file is a collection of data records containing individual records
of a similar class or application. A file-name is defined by an FD
entry in the Data Division's File Section. FD is a Reserved Word
which must be followed by a unique programmer-supplied word called
the file-name. Rules for composition of the file-name word are
identical to those for data-names (see WORD FORMATION). References
to a file-name appear in Procedure statements OPEN, CLOSE and READ,
as well as in the Environment Division.

Condition-names

A condition-name is a name assigned to a specific value, set of
values, or range of values, within a complete set of values which
a data item may assume.

A condition-name is defined within the Data Division in level 88
entries. Rules for the formation of condition-name words are the
same as those specified in WORD FORMATION. Additional information
concerning condition-names, and those procedural statements em
ploying them, is given in the sections on the DATA and PROCEDURE
DIVISIONS.

Mnemonic -names

A mnemonic-name is assigned in the ENVIRONMENT DIVISION under SPECIAL-
NAMES for reference in ACCEPT or DISPLAY statements. A mnemonic-
name is composed according to the rules for WORD FORMATION.

Paragraph-names and Section-names

Paragraph-names and Section-names are words which identify paragraphs
and sections, respectively, in the Procedure Division.

They may be up to 30 characters long, and may be all alphabetic, all
numeric, or some combination of the two.

12 - 19 November 1977

SECTION 12 PDR3056

• Literals

Literals are not, strictly speaking, words; they are actual values.

A literal is a programmer-defined constant value. It is not iden
tified by a data-name in a program, but is completely defined by
its own identity. A literal is either non-numeric or numeric.

1. Non-Numeric Literals

A non-numeric literal must be bounded by matching quotation
marks or apostrophes and may consist of any combination of
characters in the ASCII set, except apostrophe or quotation
marks, respectively. All spaces enclosed by the quotation
marks are included as part of the literal. A non-numeric
literal must not exceed 120 characters in length.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"
'CHARACTER-STRING'
"DO'S $ DON'T'S"
'PLEASE DON'T SQUEEZE THE CHARMIN'

Each character of a non-numeric literal (following the intro
ductory delimiter) may be any character other than the delimiter.
That is, if the literal is bounded ty apostrophes, then quotation
(") marks may be within the literal, and vice versa. Length of
a non-numeric literal excludes the delimiters; length minimum is
one.

A succession of two "delimiters" within a literal is interpreted
as a single representation of the delimiter within the literal.
The last example above illustrates this point.

Only non-numeric literals may be "continued" from one line to
the next. When a non-numeric literal is of a length such that
it cannot be contained on one line of a coding sheet, the fol
lowing rules apply to the next line of coding (continuation line)

A. A hyphen is placed in position 7 of the continuation
line.

B. A delimiter is placed in B Area preceding the con
tinuation of the literal.

C. All spaces at the end of the previous line and any
spaces following the delimiter in the continuation
line and preceding the final delimiter of the literal
are considered to be part of the literal.

REV. 0 1 2 - 2 0

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

D. On any continuation line, A Area should be blank.

2. Numeric Literals

A numeric literal must contain at least one and not more than 18
digits, exclusive of sign and decimal point. A numeric literal may
consist of the characters 0 through 9 (optionally preceded by a
sign) and the decimal point. It may contain only one sign char
acter and only one decimal point. The sign, if present, must
appear as the leftmost character of the numeric literal. If a
numeric literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere with the numeric literal, except
as the rightmost character. If a numeric literal does not contain
a decimal point, it is considered to be an integer.

The following are examples of numeric literals:

72 +1011 3.14159 -6 -.333 0.5

By use of the Environment specification DECIMAL-POINT IS COMMA, the
functions of the period and comma characters are interchanged, putting
the "European" notation into effect. In this case, the value of "pi"
would be 3,1416 when written as a numeric literal.

Qualification of Names

The user must be able to identify, uniquely, every name which defines an
element in a COBOL source program. The name may be made unique in its
spelling or hyphenation; or, procedural reference may be accomplished by
use of qualifier names.

In the example following, the data-name, YEAR, will require qualification
for procedural reference.

01 EMPLOYEE-RECORD
02 NAME
02 ADDRESS
02 HIRE-DATE

03 YEAR
03 MONTH
03 DAY

02 TERMINATION-DATE
03 YEAR
03 MDNTH
03 DAY

YEAR OF HIRE-DATE is a qualified reference which would differentiate between
year fields in HIRE-DATE and TERMINATION-DATE.

12 - 21 November 1977

SECTION 12 PDR3056

Qualifiers are preceded by the word OF or IN. Successive data-name or
condition-name qualifiers must designate lesser level-numbered groups
which contain all preceding names in the composite reference. That is,
HIRE-DATE must be a group item (or file-name) containing an item called
YEAR. Paragraph-names may be qualified by their containing section-
name. Therefore, two identical paragraph-names cannot appear in the
same section.

The rules for qualification are:

1. Each qualifier must be of a successively more inclusive level
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than
one data item in a source program, the data-name or condition-
name must be qualified each time it is referred to in the Proce
dure, Environment, and Data Divisions (except in the REDEFINES
clause where qualification must not be used).

4. A paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph-name need not be qualified
when referred to from within the same section.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualifi
cation. If more than one combination of qualifiers can make a name
unique, only one combination can be used. The complete set of
qualifiers for a data name must not be the same as any partial set
of qualifiers for another data-name.

7. A qualified name may only be written in the Procedure Division.

8. The maximum number of qualifiers is one for a paragraph-name,
five for a data-name or condition-name. File-names, mnemonic-names,
and section-names must be unique.

REV. 0 1 2 - 2 2

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Classes of Data

The five categories of data-items (alphabetic, numeric, numeric edited,
alpha-numeric, and alphanumeric edited), as specified in the PICTURE
clause, are grouped into three classes: Alphabetic, numeric, and alpha
numeric. For alphabetic and numeric data items, classes and categories
are the same. The alphanumeric class includes the categories of alpha
numeric edited, numeric edited and alphanumeric (without editing). Every
elementary item except for an index data item belongs to one of the
classes and further to one of the categories. The class of a group item
is treated at object time as alphanumeric regardless of the class of ele
mentary items subordinate to that group item. The following chart depicts
the relationship of the class and categories of data items.

LEVEL OF ITEM

Elementary

Nonelementary

(Group)

CLASS

Alphabetic

Numeric

Alphanumeric

Alphanumeric

CATEGORY

Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

Figure 12-3. Classes of Data

12 23 November 1977

SECTION 12 PDR3056

Data Levels

The two major levels of data are group and elementary:

• Group Item

A group item is defined as one having further subdivisions, so that it
contains one or more elementary items. In addition, a group item may
contain other groups. An item is a group item if, and only if, its
level number is less than the level number of the immediately succeeding
item. If an item is not a group item, then it is an elementary item.
The maximum size of a group is 32,767 characters. A group cannot contain
a PICTURE clause.

• Elementary Item

An elementary item is a data item containing no subordinate items. An
elementary item must contain a PICTURE clause, except when usage is des
cribed as COMPUTATIONAL (binary), or INDEX.

The classes of data are: Alphabetic, numeric, alphanumeric. Within these,
the categories of data are: Alphabetic, numeric, numeric edited, alpha
numeric.

• Alphabetic Item

An alphabetic item consists of any combination of the 26 characters of the
English alphabet and the space character.

• Numeric Item

A maximum number of 18 digits is permitted; the exact number of digit
positions is defined by the specification of 9's in the picture-string.
For example, PICTURE 999 defines a 3-digit item whose maximum decimal
value is nine hundred and ninety-nine.

• Numeric Edited or Report Item

A report item is an edited numeric item containing only digits and/or
special editing characters. It must not exceed 30 characters in length.
A report item can be used only as a receiving field for numeric data.

• Alphanumeric Edited Item

This is an alphanumeric item with editing characters contained in the
PICTURE description.

• Alphanumeric Item

An alphanumeric item consists of any combination of characters, making a
character string.

REV. 0 1 2 - 2 4

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Data Representation

Data is further categorized by the fonnat in which it is stored in the
computer. The formats are: external decimal, internal decimal, binary
and index. These formats are directly related to usage, as outlined
in the Table 12-2.

• External Decimal Item

An external decimal item is one in which one byte (8 binary bits) is
employed to represent one digit. It can be a group or an elementary
item. The USAGE for an external decimal item is always DISPLAY.

• Internal Decimal Item (Packed DECIMAL)

An internal decimal item is packed decimal format. It is attained
by inclusion of the COMPUTATIONAL-3 USAGE clause.

A packed decimal item defined by n 9's in its Picture occupies =+1
bytes in memory. All bytes, except the rightmost, contain a
pair of digits, each digit being represented by the binary equi
valent of a valid digit value from 0 to 9. For this reason, when
using packed decimal, the optimum space allocation should be an
odd size field.

In the rightmost byte of a packed item, the left half contains the
item's low-order digit, while the right half contains a representation
of the sign. An operational sign capability is always present for
a packed field, even if the picture lacks the leading character S.

• Binary Item

A binary item uses the base 2 system to represent an integer not in
excess of 32,767. It occupies one 16-bit word. The leftmost bit of
the reserved area is the operational sign. No picture clause is
required; usage is COMPUTATIONAL. If a PICTURE clause is specified,
and a decimal point is included, DISPLAY usage is assumed.

• Index Item

An index item has no picture; usage is INDEX. It is equivalent to
COMPUTATIONAL.

12 - 25 November 1977

SECTION 12 PDR3056

USAGE IS

DISPLAY

COMPUTATIONAL

INDEX

COMPUTATIONAL-3

MACHINE DESCRIPTION .

EXTERNAL DECIMAL

BINARY

BINARY

INTERNAL DECIMAL

Table 12-2. Data Representation and Usage

Standard Alignment Rules

1. If the receiving data item is described as numeric:

A. The data is aligned by decimal point and is moved to the
receiving digit positions with zero fill or truncation
at either end, as required.

B. When an assumed decimal point is not explicitly spec
ified, the data item is treated as if it had an assumed
decimal point immediately following its rightmost digit.
It is aligned as in Rule 1-A above.

2. If the receiving data item is numeric edited, the data moved
to the edited data item is aligned by decimal point. Zero filling
or truncation, at either end, occurs as required within the re
ceiving character positions of the data item, except where editing
requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric
edited data item), alphanumeric edited or alphabetic, the sending
data is moved to the receiving character positions and aligned at
the leftmost character position in the data item. Space fill or
truncation occurs to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard
rules are modified as described under JUSTIFIED, Data Division.

REV. 0 12 26

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

EXAMPLES: QS=blank, (-)=implied decimal

DATA TO BE
STORED

ABC
ABCDEF1234
AAABBBCCCDD
AAABBBCCCDDDE

RECEIVING FIELD
BEFORE TRANSFER

PQRSTUVWXYZ
PQRSTUWXYZ
PQRSTUVWXYZ
PQRSTUVWXYZ

RECEIVING FIELD
AFTER TRANSFER

ABC$$J$Wtf
ABCDEF12340
AAABBBCCCDD
AAABBBCCCDD

The examples above show the results of moving various length alphabetic
and alphanumeric items into an eleven-character field.

DATA TO BE
STORED

3-4
345^678
12345-67890
3-4
3-4
"1234567890
1234567890
1234567890

RECEIVING FIELD
BEFORE TRANSFER

987-654
987-654
987-654
987-654
ABC234
ABC234
987-654
9876-54

RECEIVING FIELD
AFTER TRANSFER

003-400
345-678
345-678
034-000
3AW>V>
123456
890-000
7890-00

The examples above show the results of moving various length numeric
items into a six-character field. The compiler assumes a decimal point
at the rightmost end of the field to be stored.

Algebraic Signs

Algebraic signs fall into two categories: operational signs and editing
signs. Operational signs are associated with signed numeric data items
and signed numeric literals to indicate their algebraic properties.
Editing signs appear on edited reports to identify the sign of the item.

12 27 November 1977

SECTION 12 PDR3056

The SIGN clause permits the programmer to state explicitly the location
of the operational sign. Editing signs are inserted into a data item
through the use of the control symbols of the PICTURE clause.

Arithmetic Expressions

• Definition

An arithmetic expression can be an identifier of a numeric elementary
item, a numeric literal, such identifiers and literals separated by
arithmetic operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in paren
theses. Any arithmetic expression may be preceded by a unary operator.
Permissible combinations of variables, numeric literals, arithmetic
operator and parentheses are given in Table 12-3.

Identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary items or numeric literals on
which arithmetic may be performed.

t Arithmetic Operators

The specific characters below represent the binary and unary arith
metic operators. They must be preceded and followed by at least one
space.

Binary Arithmetic
Operators

*

I

Unary Arithmetic
Operators

Meaning

Addition
Subtraction
Multiplication
Division

Meaning

The effect of multiplication by
numeric literal +1.

Parenthesis

()

The effect of multiplication by
numeric literal -1.

Meaning

Used to enclose expressions to
control the sequence in which
conditions are evaluated.

REV. 0 12 28

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Rules

1. Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within paren
theses are evaluated first; and within nested parentheses, evaluation
proceeds from the least inclusive set to the most inclusive set. When
parentheses are not used, or parenthesized expressions are at the same
level of inclusiveness, the following hierarchical order of execution
is implied:

1st - Unary plus and minus
2nd - Multiplication and Division
3rd - Addition and subtraction

When the sequence of execution is not specified by parentheses, the
order of execution of consecutive operations of the same hierarchical
level is from left to right.

EXAMPLE:

A+B/(C-D*E)

This expression is evaluated in the following ordered sequence:

(1) Compute the product D times E, considered as intermediate
result Rl.

(2) Compute intermediate result R2 as the difference C-Rl.

(3) Divide B by R2, providing intermediate result R3.

(4) The final result is computed by addition of A to R3.

Without parentheses, the expression

A+B/C-D*E

is evaluated as:

Rl = B/C
R2 = A+Rl
R3 = D*E

final result = R2-R3

When parentheses are employed, the following punctuation rules should
be used:

(1) A left parenthesis is preceded by one or more spaces.

(2) A right parenthesis is followed by one or more spaces.

12 - 29 November 1977

SECTION 12 PDR3056

The expression A-B-C is evaluated as (A-B)-C. Unary operators
are permitted, e.g.:

COMPUTE A = +C +4.6. COMPUTE X = -Y.

2. Operators, variables, and parenthesis may be combined in arith
metic expressions as summarized below in Table 12-3.

FIRST
SYMBOL

Variable

* / = -

Unary + or -

(

)

SECOND SYMBOL

Variable

X

P

P

P

X

* / - +

P

X

X

X

p

Unary + or -

X

P

X

P

X

(

X

p

p

p

X

)

p

X

X

X

p

Table 12-3. Symbol Combinations in Arithmetic Expressions

In the table above, P = permissible, X = invalid, Variable indicates
an identifier or literal.

3. An arithmetic expression may begin only with the symbol (• + -
or a variable; it may end only with a) or a variable. There must
be one-to-one correspondence between left and right parentheses of
an arithmetic expression such that each left parenthesis is to the
left of its corresponding right parenthesis.

REV. 0 12 30

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. These have several common features.

1. The data descriptions of the operands need not be the same;
any necessary conversion and decimal point alignment is supplied
throughout the calculation.

2. The maximum size of each operand is eighteen (18) decimal digits.
The composite of operands, which is a hypothetical data item resulting
from the superimposition of specified operands in a statement aligned
on their decimal points, must not contain more than eighteen decimal
digits.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT,
MOVE, SET, STRING, UNSTRING, or other statements share a part of their storage
areas, the result of the execution of such a statement is undefined and un
predictable .

Conditional Expressions

• Definition

Conditional expressions identify conditions which are nested to enable
the object program to select between alternate paths of control depend
ing upon the truth value of the condition. Conditional expressions are
specified in the IF, PERFORM and SEARCH statements. There are two cate
gories of conditions associated with conditional expressions: simple
conditions and compound conditions.

• Simple Conditions

The simple conditions are the relation, class, condition-name, and sign
conditions. A simple condition has a truth value of 'true' or 'false'.
The inclusion in parentheses of simple conditions does not change the
simple truth value.

1. Relation Condition

A relation condition has the format:

operand relation operand

Where operand is a data-name, literal or figurative-constant.

12 - 31 November 1977

Relation

NOT
NOT
NOT

<
>
=
<
>

SECTION 12 PDR3056

A relation condition has a truth value of 'true' if the relation
exists between the operands. Comparison of two numeric operands
is permitted regardless of the formats specified in their respective
USAGE clauses. However, for all other comparisons, the operands
must have the same usage.

Relation has three basic forms, expressed by the relational symbols:
equals (=), less than (<), or greater than (>).

Another form of relation which may be used involves the Reserved Word
NOT, preceding any of the three relational symbols. Thus, the six
relations in conditions are:

Meaning

is equal to
is less than
is greater than
is not equal to
is greater than, or equal to
is less than, or equal to

Usages of Reserved Word phrasings EQUAL TO, LESS THAN, and GREATER
THAN are accepted equivalents of = < > respectively. Any form of the
relation may be preceded by the word IS, optionally.

NOTE: Although required where indicated in formats, the relational
characters '>', '<', and ' = ' are not underlined in this text.

The first operand of a conditional expression is called the subject
of the condition; the second operand is called the object of the
condition. The relation condition must contain at least one reference
to a variable.

The relational operator specifies the type of comparison to be made
in a relation condition. A space must precede and follow each reserved
word comprising the relational operator. When used, 'NOT' and the
next key word or relation character form one relational operator de
fining the comparison to be executed for truth value; e.g., 'NOT EQUAL'
is a truth test for an 'unequal' comparison; 'NOT GREATER' is a truth
test for an 'equal' or 'less' comparison.

The relational condition may take two forms; numeric comparisons and
non-numeric comparisons.

A. Numeric Comparisons

For numeric operands, a comparison is made with respect to
their algebraic value. The length of the literal or arith
metic expression operands, in terms of number of digits re
presented, is not significant. Zero is considered a unique
value regardless of the sign.

REV. 0 1 2 - 3 2

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Comparison of these operandsv is permitted irrespective
of the manner in which their usage is described. Unsigned
numeric operands are considered positive for purposes of
comparison.

The data operands are compared after alignment of their
decimal positions.

An index-name or index item may appear in a numeric
comparison.

B. Non-Numeric Comparisons

For non-numeric Comparisons, non-equi-length comparisons are
permitted, with spaces being assumed to extend the length of
the shorter item, if necessary. Relationships are defined
in the ASCII code; in particular, the letters A-Z are in an
ascending sequence, and digits are less than letters. Refer
to Appendix F for all ASCII character representations and
the Prime collating sequence.

The data class (see Data Representation) of the two operands,
where one is a literal, must be the same. For example, a
numeric operand may not be compared to a non-numeric literal.

EXAMPLE:

01 TEST-FIELD PIC 9

MOVE 1 TO TEST-FIELD

IF TEST-FIELD = '!'

The coding above will fail. The data class of the literal
should be set up as numeric. Thus,

IF TEST-FIELD = 1

will execute properly.

REV. 0 12 - 33

SECTION 12 PDR3056

2. Class Condition

The class condition determines whether the operand is numeric or
alphabetic. If numeric, it consists entirely of the characters
'0', 'l1, '2T, ..., '9', with or without the operational sign. If
alphabetic, it consists entirely of the characters 'Af, 'B', 'C,
..., 'Z' and space. The general format for the class conditions is
as follows:

, t c „ _ TC rKTnT1 fNUMERIC "\
data-name IS [NOT] | ^ ^ ^ ^ j

The NUMERIC test is valid only for a group, decimal, or character
item. The ALPHABETIC test is valid only for a group or character
item.

The class condition is equivalent to comparing the data contained
in data-name to zero in order to determine the truth or falsity of
the stated condition.

3. Condition-name Condition

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name. The general format for the
condition-name condition is as follows, where condition-name is
defined by a level 88 Data Division entry:

IF condition-name statement(s).

If the condition-name is associated with a range or ranges of values,
then the conditional variable is tested to determine whether or not
its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to
the condition-name equals the value of its associated conditional
variable. Condition-names are allowed in the File Section and
Linkage Section where VALUE clauses are not.

4. Sign-Condition

The sign condition determines whether or not the algebraic value of
an arithmetic expression is less than, greater than, or equal to
zero. The general format for a sign condition is as follows:

fPOSITIVE"
data-name IS [NOT] < NEGATIVE

ZERO

REV. 0 1 2 - 3 4

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Compound Conditions

A compound condition is a concatenation of simple conditions,
combined conditions and/or complex conditions with logical con
nectors (logical operators 'AND' and 'OR') or negating these
conditions with logical negation (the logical operator 'NOT').
The truth of a complex condition is that truth value which results
from the interaction of all the stated logical operators on the
individual truth values of simple conditions, or the intermediate
truth values of conditions logically connected or logically negated.
Five levels of parenthesis are permitted in compound conditions.

A compound condition has the format:

condition-1 ^ [NOT] condition-2
UK

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is 'true' if
both of the conjoined conditions are true; 'false'
if one or both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is 'true' if
one or both of the included conditions is true;
'false' if both included conditions are false.

The reserved words AND or OR permit the specification of a series
of relational tests, as follows:

Individual relations connected by AND specify a compound
condition which is met (true) only if all the individual
relationships are met.

Individual relations connected by OR specify a compound
condition which is met (true) if any of the individual
relationships are met.

The compound condition below contains both AND and OR connectors.

IF X = Y AND FLAG = 'Z' OR SWITCH = 0 GO TO PROCESSING.

Execution will be as follows, depending on various data values:

12 - 35 November 1977

S2CTI0N 12 PDR3056

•

X

10
10
10
10
6
6

Data
Y

10
11
11
10
3
6

Value
FLAG

'Z»
fZ»
'Z*
ipt

ipt
tpl

SWITCH

1
1
0
1
0
1

EXECUTES
PROCESSING?

YES
NO
YES
NO
YES 1
NO

1. Evaluation

A. Evaluation of individual simple conditions is done first.

B. AND-connected simple conditions are next evaluated as a
single result.

C. OR and its adjacent conditions (or previously evaluated
results) are then evaluated.

EXAMPLES:

(1) A < B OR C D OR E NOT > F

The evaluation is equivalent to (A<B) OR (C=D) OR (E<F) and is
true if any of the three individual parenthesized simple condi
tions is true.

(2) WEEKLY AND HOURS NOT = 0

The evaluation is equivalent, after expanding level 88 condi
tion-name WEEKLY, to

(PAY-CODE = *W') AND (HOURS = 0)

and is true only if both the simple conditions are true.

(3) A = l A N D B = Z A N D G > - 3

OR P NOT EQUAL TO "SPAIN"

i s eva lua ted as

[(A = 1) AND (B = 2) AND (G >-3)]

OR (P = "SPAIN")

REV. 0 12 36

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

If P = "SPAIN", the compound condition can only be true if all
three of the following are true:

A = 1
B = 2
G > -3

However, if P is not equal to "SPAIN", the compound condition is
true regardless of the values of A, B and G.

2. Other Considerations

A. Multiple Condition

Multiple Condition refers to compound conditions grouped in
parenthesis. Where more than 5 levels of parenthesis are
required, implicit grouping, condition-names, nested IF
statements, or some combination should be substituted.
For example, in the statement

IF A=B AND (C=D or E=F)

implicit grouping may be achieved by coding

IF A=B AND C=D OR A=B AND E=F.

B. Negating Conjunction

The use of NOT as a negating conjunction is not permitted
in this compiler at this time. That is, IF A=B AND NOT
C=D, is invalid. The reader should substitute suggested
solutions for multiple conditions outlined above.

The use of NOT as a relation is permitted. Therefore, it
is correct to code IF A=B AND C NOT=D, but incorrect to
code IF A=B AND NOT C=D.

C. Implied Subjects (Abbreviated Combined Relation Conditions)

EXAMPLES:

IF A=B or C OR D (IMPLIED SUBJECT)

IF A=B OR A=C OR A=D (EXPLICIT SUBJECT)

Implied subjects or relations will be available at Revision
14.1. At this time, the statement IF A=B OR C, is invalid.
It is suggested that the user employ condition-names, nested
IF's, or full coding as alternatives.

12 - 37 November 1977

SECTION 12 PDR3056

Subscripting

Subscripts can be used only when reference is made to an individual ele
ment within a list or table of like elements which have not been assigned
individual data-names (see the OCCURS clause, DATA DIVISION).

The subscript can be represented either by a numeric literal which is an
integer, or by a data-name. The data-name must be a numeric elementary
item representing an integer. When the subscript is represented by a
data-name, data-name may be qualified but not subscripted.

The subscript may be signed and, if signed, it must be positive. The
lowest possible subscript value is 1. This value points to the first ele
ment of the table. The next sequential elements of the table are pointed
to by subscripts whose values are 2, 3, The highest permissible
subscript value, in any particular case, is the maximum number of occur
rences of the item as specified in the OCCURS clause.

The subscript which identifies the table element is delimited by the
balanced pair of separators, left parenthesis and right parenthesis,
following the table element data-name. When more than one subscript
is required, they are written in the order of successively less in
clusive dimensions of the data organization.

The format is:

(condign-name} Csubscript-1 [subscript-2 [, subscript-3]])

Indexing

References can be made to individual elements within a table of like ele
ments by specifying indexing for that reference. An index is assigned to
that level of the table by using the INDEXED BY phrase in the definition
of a table. A name given in the INDEXED BY phrase is known as an index-
name and is used to refer to the assigned index. The value of an index
corresponds to the occurrence number of an element in the associated
table. An index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by either a SET,
or a Format 4 PERFORM statement.

Direct and Relative Indexing

Direct and Relative indexing are supported by Prime COBOL as follows:
Direct indexing is specified by using an index-name in the form of a sub
script. Relative indexing is specified when the index-name is followed
by the operator + or -, followed by an unsigned integer numeric literal
all delimited by the balanced pair of separators left parenthesis and
right parenthesis following the table element data-name. The occurrence
number resulting from relative indexing is determined by incrementing

REV. 0 1 2 - 3 8

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

or decrementing by the value of the literal, the occurrence number re
presented by the value of the index. When more than one index-name is
required, they are written in the order of successively less inclusive
dimensions of the data organization.

When a statement is executed which refers to an indexed table element,
the value in the associated index must neither be less than zero, nor
greater than the highest occurrence number of an element in the table.
This restriction also applies to the values resultant from relative
indexing.

Restrictions on Qualification, Subscripting and Indexing Are:

• A data-name must not itself be subscripted nor indexed when that data-
name is being used as an index, subscript or qualifier.

• Indexing is not permitted where subscripting is not permitted.

• An index may be modified only by the SET, SEARCH, and PERFORM state
ments. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names. Such data items
are called index data items.

The general format for indexing is:

fdata-name 1 f findex-name-1
condition-nameJ ^ 1 literal-1

[{±} literal-2] }

findex-name-2
\literal-3

[{ + } literal-4] } •0

(index-name-3
I literal-5

[{±} literal-6] }

12 39 November 1977

file:///literal-3

r

PDR3056 IDENTIFICATION DIVISION

SECTION 13

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

FUNCTION:

The Identification Division must be included in every COBOL source program
as the first entry. This division identifies the source program and the
resultant output listings. Additional user information, such as the date
the program was written or the program author, may be included under the
appropriate paragraph(s) in the general format shown below.

FORMAT:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name, (no special characters in name)

[AUTHOR, comments.]

[INSTALLATION, comments.]

[DATE-WRITTEN, comments.]

[DATE-COMPILED, comments.]

[SECURITY, comments.]

[REMARKS, comments.]

SYNTAX RULES:

1. The Identification Division must begin with IDENTIFICATION
DIVISION followed by a period and a space.

2. The PROGRAM-ID paragraph is required and must follow immed
iately after the division header.

3. Program-name follows the general rules for WORD FORMATION.
It may be any alphanumeric string, but the first must be alpha
betic. Special characters, including the hyphen, are prohibited.
(Only the first six characters of program-name are retained by
the compiler.)

4. All remaining paragraphs are optional. When included, these
must be presented in the order shown above.

13 - 1 November 1977

SECTION 13 PDR3056

GENERAL RULES:

1. Fixed paragraph names identify the type of information contained
in the paragraph.

2. The comments entry can be any combination of characters. Use of
the hyphen in the continuation indicator area is not permitted;
however, the comments entry can appear on one or more lines.

REV. 0 13

PDR3056 IDENTIFICATION DIVISION

Sequence
tP*0£) (SERIAL)

1 3 4 6

1" A IB ^ > ^ A V \ P V . ^ t '. C O B O L S t a t e m e n t R € F 2 _

7 8 f 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

0 ! l l f : M | i i | 1 1 !
0!2i *• i ! • ! | ! | 1 ! 1
03 t

G:4 !

: o|5|
0J6
0J7
0)S |

o!9J
j _ i!oi
r ' l j i lT

l !2 '

_ _iiiL-
1|4

115

lid
1 7}

iVl
l |9 j

2|0|

M 1 ! i i I 1 1 ! i | i
tbicin/JTriiFliaMJTkoW orlvrsibWL i | i !
pkag^Mi-r^. l f£F2. i ! i !
rt!urrw|o:<!.! PiRll|« d CJO M P UT F!R . j i 1
T-hlamuLtTiTflti. MfRflMrW^Atl. i i I J 1
WrtrTlEJ^irTiE^.I SEPHrelM&Ek̂ IST7. ' j ! ! |
fcwrd-leionPlLJGJsi.] S^TiEMfere iHTI7. M i ' I I
kiEttwitfu'si. ' frHit;s Afc£A n s 6|*i£K> Ifjo b e s t e a d s ^ r peo&eAJH.M < !

1 M | ! : i 1 1 1 ! | ! 1 ! i i | !
i M M M ! ! ! 1 1 ; M l i | M!
1 j , | i M ' i l l ! i i i 1 | 1
M ' j ! 1 : 1 • 1 M i M i 1 I I
M M ! ; i • 1 1 1 ! 1

• I M ' i ! ! 1 i < '
• ! 1 : 1 ! i !

; I ! : 11 l i •• i M i i i i
• I ! 1 ; : i I i I M i l ! ! j 1 : i ! 1 M i M 1 I 1
M i ! ! i ! I i j I N - i !

13-3 November 1977

PDR3056 ENVIRONMENT DIVISION

SECTION 14

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION

FUNCTION:

The Environment Division -defines those aspects of a data processing
problem which are dependent upon hardware configurations and con
siderations.

FORMAT:

[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER, computer-name.]

[OBJECT-COMPUTER, computer-name.]

[SPECIAL-NAMES. [CONSOLE IS mnemonic-name]

[,CURRENCY SIGN IS literal]

[,DECIMAL-POINT IS COMMA]

[,ASCH IS NATIVE]].]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{SELECT filename ASSIGN TO device

[; RESERVE integer ^ g

SEQUENTIAL
[;ORGANIZATION IS < INDEXED

RELATIVE

fSEQUENTIAL
[;ACCESS MODE IS I RANDOM >]

DYNAMIC

[FILE STATUS IS data-name-1] }...

[I-0-CONTROL.

SAME AREA FOR filename-1, filename-2,...]]

14 - 1 November 1977

SECTION 14 PDR3056

SYNTAX RULES;

1. The Environment Division must begin with the header ENVIRONMENT
DIVISION, followed by a period and a space.

2. Mandatory sequence of required and optional paragraphs is shown
in the above format.

NOTE: In the rare instance when hardware-dependant configurations
and considerations do not apply, the entire ENVIRONMENT DIVISION may
be omitted.

GENERAL RULES:

1. Each section within the Environment Division begins with its
section-name, followed by the word SECTION, and each paragraph within
each section begins with its paragraph-name.

2. The sections and paragraphs in the Environment Division are dis
cussed separately under their appropriate headings on the following
pages.

REV. 0 1 4 - 2

PDR3056 ENVIRONMENT DIVISION

[CONFIGURATION SECTION.,

This section is optional. It is required only if one or more of the following
three paragraphs is used.

1. [SOURCE-COMPUTER, computer-name.]

Computer-name serves only as a comments entry. It is used to identify
the computer for which the COBOL program is written.

2. [OBJECT-COMPUTER, computer-name.]

Computer-name serves only as a comments entry. It is used to identify
the computer on which the COBOL program will be executed.

3. [SPECIAL-NAMES.

This paragraph is optional. It is required only if one or more of the
following four statements is used.

A. [CONSOLE IS mnemonic-name]

Mnemonic-name is a programmer-defined word which will be
associated with CONSOLE throughout the program.

EXAMPLE:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. CONSOLE IS TTY.

PROCEDURE DIVISION.

DISPLAY YEAR OF HIRE-DATE UPON TTY.

The coding above would cause the field, YEAR OF HIRE-DATE, to be
output on the CONSOLE.

NOTE: CONSOLE IS is an optional statement. If omitted, the
computer will automatically associate CONSOLE (terminal) with
ACCEPT and DISPLAY.

1 4 - 3 November 1977

SECTION 14 PDR3056

B. [CURRENCY SIGN IS literal]

Literal represents the currency sign to be used in the PICTURE
clause. It is a single character, non-numeric literal which will
be used to replace the dollar sign as the currency sign. The
designated character may not be a quote mark, or any of the char
acters defined for PICTURE representations.

C. [DECIMAL-POINT IS COMMA]

The "European" convention of separating integer and fraction posi
tions of numbers by the comma character, rather than the decimal
point or period, is specified by employment of the DECIMAL-POINT
IS COMMA clause.

NOTE: The Reserved Word IS, is required in entries for currency
sign definition and decimal-point convention specification.

D. rASCII IS NATIVE]].]

The entry, ASCII IS NATIVE, specifies that the data representation
adheres to the American Standard Code for Information Interchange
as shown in Appendix F. This convention is assumed even if the
entry is not present.

REV. 0 1 4 - 4

PDR3056 ENVIRONMENT DIVISION

[INPUT-OUTPUT SECTION.

The INPUT-OUTPUT SECTION is used when there are external data files. It
allows specification of peripheral devices and information needed to
transmit and handle data between the devices and the program. The section
has two paragraphs: FILE-CONTROL and I-0-CONTROL.

FILE-CONTROL

This entry names each file and specifies its device medium, allowing
specific hardware assignments. It can also specify other file-related
information, such as number of input-output areas allocated, file
organization, and method of file access. The format chosen is dependent
upon file organization. Each file requires one SELECT statement and the
appropriate sequence of optional clauses.

FORMAT 1:

SELECT file-name

ASSIGN TO device

[; RESERVE integer-1 I ^ J]

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name].

FORMAT 2:

SELECT file-name

ASSIGN TO device

AREA "I ,
AREASj J

[; RESERVE integer-1

; ORGANIZATION IS RELATIVE

; ACCESS MODE IS

r SEQUENTIAL [, RELATIVE KEY IS data-name-lp

C RANDOM DYNAMIC

[; FILE STATUS IS data-name-2].

, RELATIVE KEY IS data-name-1

14 November 1977

SECTION 14 PDR3056

FORMAT 3:

SELECT file-name

ASSIGN TO device ...

LARFA
AREAS

ORGANIZATION IS INDEXED

; ACCESS MODE IS
fSEQUENTIAI/
4 RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]...

[; FILE STATUS IS data-name-3] .

A. SELECT filename ASSIGN TO device ...

Filename is a programmer-defined name described in the DATA
DIVISION. Each DATA DIVISION FD entry must be specified
once in a SELECT statement and only as a filename. The
ASSIGN to devices clause associates the file with a storage
medium or input/output hardware. Allowable devices appear
in Table 14-1.

Device

TERMINAL

READER
PRINTER
PUNCH
MT7

MT9
PFMS*
OFFLINE-PRINT

Maximum No.
of Unit

0,1,2,3
0,1,2,3

Hardware Device

CRT TERMINAL
TTY TERMINAL
CARD READER (for future designation)
SYSTEM PRINTER
CARD PUNCH (for future designation)
7 TRACK MAG. TAPE DRIVE (MT7 is currently

interpreted as MT9
9 TRACK MAG. TAPE DRIVE
DISK STORAGE
FORMS PRINTER OUTPUT

*PFMS = PRIME FILE MANAGEMENT SYSTEM
. _ _ , am

Table 14-1. Device Specifications

REV. 0 14

PDR3056 ENVIRONMENT DIVISION

EXAMPLES: SELECT filename ASSIGN TO TERMINAL.
SELECT filename ASSIGN TO PFMS.
SELECT FILENAME ASSIGN TO MT9.

B. [RESERVE integer
TAREA
[AREAS

The RESERVE clause allows the user to specify the number of input-
output buffer areas to be allocated. For tape applications only,
the integer value can be from 1 to 7, permitting up to 7 buffers
in memory at one time.

If tape is not involved, the integer must be specified as one.
Should the RESERVE clause be omitted, the default of one buffer
area will be assigned by the compiler.

C. [ORGANIZATION IS <
SEQUENTIAL
RELATIVE
INDEXED

]

The ORGANIZATION clause specifies the type of file organization.
When omitted, the default is sequential.

r
SEQUENTIAL
RANDOM D. [ACCESS MODE IS <
DYNAMIC

3

The sequence in which records are accessed is described through
the use of the ACCESS MODE clause. When omitted, the default is
sequential.

E. [FILE STATUS IS data-name].

The FILE STATUS clause permits the user to specify a two character,
unsigned field (data-name) described in the Working Storage Section.

When the FILE STATUS clause is specified in the FILE-CONTROL para
graph, a value is moved by the operating system into data-name. This
occurs after the execution of every statement which references that
file either explicitly or implicitly. Specifically, the FILE STATUS
data item is updated during the execution of the OPEN, CLOSE, READ,
WRITE, REWRITE, DELETE or START statement. This value in data-name
indicates to the COBOL program the status of execution of the state
ment.

14 November 1977

SECTION 14 PDR3056

The leftmost character of the FILE STATUS data item is known as
status key 1; the rightmost character is status key 2. Status
key 1 is set to indicate a specific condition upon completion of
the input-output operation; status key 2 further describes the
results of the operation.

Status Key 1 settings:

'0' indicates Successful Completion
'1' indicates At End
'3' indicates Permanent Error
'9' indicates Implementor Defined

NOTE: A setting of 9 indicates that the input-output statement
was unsuccessfully executed as a result of a condition which is
specified by the implementor. This value is used only to indicate
a condition not otherwise specified by the values of status key 1,
or by valid combinations of the values of status key 1 and status
key 2. When status key 1 contains a value of '9', indicating an
implementor-defined condition, the value of status key 2 is defined
by Prime.

Valid combinations of key values for each type of file organization
are shown in Appendix D, File Status Key Definitions.

[I-0-C0NTR0L.

The I-0-CONTROL paragraph is optional unless SAME AREA is used.

SAME AREA FOR filename-2, filename-3... .]

The SAME AREA clause allows the programmer to share the same 1-0 buffer
areas for files which are not open concurrently. No file may be listed
in more than one SAME AREA clause.

REV. 0 1 4 - 8

PDR3056 ENVIRONMENT DIVISION

Sequence :
c»oej
1 3

r
•

r

T
i

(SE«I»L] l

4 6

o n J

0^2 J

0 3 \
0:4!
;'5

[0 6
0 7

0 8

0 9

! 0
1 1

1 T

^ 3 i

4

1 5
1 6'

1 7

1 S

1 9

2 0

I *
4

: u
i

i —
5 A IB C V f t L i f i l C « C O B O L S f a f e m e n QKZC T

| ^ n n r L t . ^ - ' —
f 8 112 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

* : ! ! j
' !
t- i •

eKJIVX|R.;6A/H

c^Kiiqiaae
5O.U*|C;E;-C
a^recx- c

' I i

! 1

6MT
ATTO
fcMPU
OM?\ i

sfccSiftL.-iJAM.e
| ^ - C I l r s

jXfviipUiT-OUlTP n i l
FTLEI-CO N/ir^oa

: jSEL.dCT L
jSi^UEhT Q

: jsiEuripor fi
i i ftCCE

1 '

. 1

If
L : i :

k ; ! U j
M m 1 '

! i :

(\L \ d
fVCTfr
AX'Te

ftiV-ff-

^ILV

1 •
1 ! i

1

: i

•
1 1

i ; !
i i

WrWT
tf i5|G
re«L
[T^1.
$.: c

MlftiT

' jsks
• ; ,
rsrrf-
W i -
IC6C
ss. ,v|

ktfftK
* *) & T

WT
SlNffT T "

•5fTP|
i ;

i : ! ! ! •
1

I '

1 ! 1
1 '

i i i
i ! :

5.TCM
CTT:O

VRT

w\\
ONl'SiO

• t ^ l . j
rroisi

FIL^
Frv_€
Tc?Y
oihe
[e! HE
r^ Sfc

i 1 1
1 i j
• i i
! : 1

» •
Kl|. l !

MP,!
HIS.1

\S\ IX
j !

j i

! !
k fisls

^ s
- r-iit
ffS ^
roti>
CO.fci

•E i f t d c d e n

"p £e<LaflD
rryi*>

i

I ;
i 1 ; |
! i

is f
! 1 i

' 1 :

1 ' '
! i I
! ! 1
i ! i

!

1 !
• i !
i : i
1 , |

! : i

S T-T

1 : ;

: i

! j i

UGlll
TGitf

e <ta
V'KilA'H

K^v
<:s,\
<IPV
<:GY

ILC-

' i '
1 ! '

i !!
M l
i i i

i | |
: ! •
! ! i

; i
! ! '
i i i

%\\ 1 i
i 1 !
I ! !
Mi

TQ\ P
Tti -9

siis-ii
re„

LA*
StTPi

" j&' i*
pi*

SITAT

1 i
I

1 I
; j

i I

i i

i

i i i
i

i ;

STtiT
F ^ S .

Tc*

RH.Co
T-IV/fl
• r e
[TrtD
ST-M
as.

; i 1

1 1 1
' ! 1

j

; j

i ! i
i j

1 i i

i i
| i

1 1

i '
i i

1 !
'e^.i

• i
i i

*>F;MS

eM K
H£" i

j 1

i

W€\
!

! 1

i

i
!

i !

— — i —

1 i
i j
! 1
1 !

l
; i
! !

! i I
i | !
! i i

1 I 1
I 1

• i i
; i !
1 U a , i O K

£Y| T

1 ! !
1 i

1 i

i ; !
; i i

: I

!
1 ,
1 I

i ! 1

Ml
i i
1 1
I 1 '

i : i
i ! i
i i 1

. 1 :
! i

1

G-AKlT

ts P i
i

; j i
i

1 i

• 1
• 1

!
1

1

1 1 |
i i 1

i ! ! i j i

I
i 1 1 '

111
111
i
I i !
1 i !
1 i
1 ! :
i : :

; ! i
! : !

HMVT

I !
1 1
! 1 !

! I •
' :

j i

: i

i !

i

**l 4
oiiJP-ilh.!

I ' i
i ' ;

! 1 i
: ; !

• 1

Ml 1
1 j !

i ; !

1 i
. 1

Ml
. !

1 ! i
1 i !
i 1 '
1 :

1
i

! 1
1 I
i 1

1

; i
' j
1 ! |

i ; |

! I 1
! 1

: |
: ! i i

i i

: i i

Ls> £ M

; i

i i !
i , i
i ;
i

Mil
i 1
i i

M i l

I I ! 1 ! j

! i
11

i!
i 1

i

i
i
i

i i T
i i i

i i i
1 i

1 ! ; i 1 i : i

MM
!M
i 1 i

i !

I | ! i
1 I :

MM

hi
111
i ; i

14-9 November 1977

DPR3056 DATA DIVISION

SECTION 15

DATA DIVISION

DATA DIVISION

FUNCTION:

The Data Division of the COBOL source program defines the nature and
characteristics of the data to be processed by the program. Data to
be processed falls into three categories:

1. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or areas.

2. That which is developed internally and placed into inter
mediate or working storage.

3. Constants which are defined by the user.

The Data Division consists of three optional sections. If used, they
must appear in the following order:

1. FILE SECTION. Files and records in files are described.

2. WORKING-STORAGE SECTION. Memory space is allocated for the
storage of intermediate processing results.

3. LINKAGE SECTION. Data available to a called program is described.

FORMAT:

DATA DIVISION.

[FILE SECTION.

[file description entry
record description entry...]...]

[WORKING-STORAGE SECTION.

level 77 data description entry
Idata item description entry I

[LINKAGE SECTION.

level 77 data description entry ,
[data item description entry I * * * •"

15 - 1 November 1977

SECTION 15 PDR3056

SYNTAX RULES:

1. The Data Division must begin with the header DATA DIVISION, fol
lowed by a period and a space.

2. When included, optional sections of the Data Division must be
in the same order as shown above.

GENERAL RULES:

1. Each section within the Data Division begins with its section-
name, followed by a period and a space.

2. Sections and statements in the Data Division are discussed on
the following pages in the same order in which they occur in the
division. File and Record Description entries are presented in the
File Section; the same Record Description entry format is also applied
to the Working-Storage and Linkage Sections.

REV. 0 1 5 - 2

PDR3056 DATA DIVISION

FILE SECTION

FUNCTION:

The File Section of the Data Division defines the structure of data
files. Each file is defined by a File Description entry, and by one
or more Record Description entries.

FORMAT:

FILE SECTION.

[file-description-entry [record-description-entry] |J...
SYNTAX RULES:

1. The File Section is optional. If used, it must begin with the
words FILE SECTION, followed by a period and a space.

2. The section consists of the header, followed by one or more
File Description entries (FD). Each FD must be followed by Record
Description entries for all records within the file described by
the FD entry.

GENERAL RULE:

Each file associated with an input-output device must be represented
by a File Description entry (see FILE-CONTROL.)

15 - 3 November 1977

SECTION 15 PDR3056

FILE DESCRIPTION

FUNCTION:

The file description provides information concerning the physical struc
ture, identification, and record names pertaining to a given file.

FORMAT:

FD file-name [UNCOMPRESSED]

LABEL
fRECORD IS "\ /STANDARD"!
^RECORDS AREJ ^OMITTED J

[BLOCK CONTAINS integer-1 { ̂ O ^ F ^ /]

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS]

[VALUE OF FILE-ID IS literal-1]

[OWNER IS literal-2]

rmTA f RECORD IS 1 , . n XA . 01 ,
[DATA < RECORDS ARE 1 data-name-1 [data-name-2] ...]

[CODE-SET IS ASCII].

SYNTAX RULES:

1. The level indicator FD identifies the beginning of a File Des
cription and must precede the file-name.

2. File-name follows the general rules for WORD FORMATION.

3. The UNCOMPRESSED option is used only with READ files. It allows
a PRWFIL READ, rather than an RDASC READ.

4. The FD entry is a sequence of clauses which must be terminated
by a period.

5. The LABEL RECORD clause is required; other clauses which follow
file-name are optional.

REV. 0 15

PDR3056 DATA DIVISION

6. If the DATA RECORD clause is used, one or more Record Description
entries must follow the File Description entry.

7. These rules apply to the overall File Section. Clauses in the
File Description are presented on the following pages in the same
order as they appear above.

15 - 5 November 1977

SECTION 15 PDR3056

UNCOMPRESSED

FUNCTION:

The UNCOMPRESSED clause enables a disk READ based on record length,
rather than compression control characters.

FORMAT:

FD file-name [UNCOMPRESSED]

GENERAL RULES:

1. The UNCOMPRESSED clause is optional. When used, it enables a
READ based on record length (PRWFIL), rather than compression
control characters (RDASC).

2. This option must be used when reading sequential 1-0 files
containing packed or binary data.

REV. 0 1 5 - 6

PDR3056 DATA DIVISION

r LABEL RECORDS

FUNCTION:

The LABEL RECORDS clause specifies whether labels are present for the
file.

FORMAT:

LABEL /RECORD IS 1 /STANDARD^
^RECORDS ARE/ \ OMITTED J

SYNTAX RULE:

This clause is required in every File Description entry.

GENERAL RULES:

1. OMITTED specifies that no explicit labels exist for the file or
device to which the file is assigned.

2. STANDARD specifies that a label exists for the file, and that
the label conforms to system specifications. The STANDARD option
must be specified for all files assigned to DISK (PFMS) or tape.
See Table 15-1 below.

DEVICE

TERMINAL
READER
PRINTER
PUNCH
MT7 (TAPE)
MT9 (TAPE)
PFMS (DISK)

STANDARD

X
X
X

OMITTED

X
X
X
X

Table 15-1. Label Options

15 November 1977

SECTION 15 PDR3056

BLOCK CONTAINS

FUNCTION:

The BLOCK CONTAINS clause specifies the size of a physical record.

FORMAT:

[BLOCK CONTAINS integer-1 < c ^ ^ E R S |]

SYNTAX RULES:

1. The BLOCK CONTAINS clause is optional.

2. The clause can only be used in connection with tape files.

GENERAL RULES:

1. The clause may be omitted if the physical record contains one, and
only one, complete logical record.

2. Omission of this clause assumes records are unblocked.

3. When the RECORDS option is used, the compiler assumes that the block
size provides for integer-1 records of maximum size and then provides
additional space for any required control words.

4. When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to re
present the items within the physical record.

5. When neither the CHARACTERS nor the RECORDS option is specified, the
CHARACTERS option is assumed.

REV. 0 1 5 - 8

PDR3056 DATA DIVISION

RECORD CONTAINS

FUNCTION:

The RECORD CONTAINS clause specifies the size of data records.

FORMAT:

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS]

GENERAL RULES:

1. Since the size of each data record is defined fully by the set
of data description entries constituting the record (level 01)
declaration, this clause is always optional.

2. Integer-2 may not be used by itself unless all the data records
in the file have the same size. In this case, integer-2 represents
the exact number of characters in the data record. If integer-2
and integer-3 are both shown, they refer to the minimum number of
characters in the smallest size data record, and the maximum number
of characters in the largest size data record, respectively.

15 - 9 November 1977

SECTION 15 PDR3056

VALUE OF FILE ID

FUNCTION:

The VALUE OF clause particularizes the description of an item in the label
records associated with a file; thus allowing for the linkage of internal
and external program names.

FORMAT:

[VALUE OF FILE-ID is literal-1]

SYNTAX RULE:

This clause is mandatory if labels are standard.

GENERAL RULES:

1. Literal-1 is the name which is used by Prime at run-time to dynami
cally allocate files. It is a non-numeric value which may not exceed
8 characters.

2. If further definition does not occur at run-time, literal-1 will
become the default value for internal filename designation.

REV. 0 1 5 - 1 0

r

PDR3056 DATA DIVISION

OWNER IS

FUNCTION:

The OWNER IS clause points to the User File Directory (UFD) in a Prime
system, in which literal-1 of VALUE OF FILE-ID is contained.

FORMAT:

[OWNER IS literal-2]

SYNTAX RULE:

The OWNER IS clause may be used only with disk files.

GENERAL RULES:

1. Literal-2 is a non-numeric value which may not exceed 6
characters.

2. The clause is essentially ignored in this compiler in 64R mode;
and it may be overridden in both 64R and 64V mode by explicit de
finition at run-time.

3. If the clause is omitted, a default of the current UFD will
apply.

15 - 11 November 1977

SECTION 15 PDR3056

LIFE-CYCLE

FUNCTION:

LIFE-CYCLE allows for the development of an expiration date as "today-
plus integer" for output files.

FORMAT:

[LIFE-CYCLE is integer-4]

SYNTAX RULE:

Integer-4 can contain a value of 0 to 32,767 inclusive.

GENERAL RULE:

If LIFE-CYCLE is omitted, integer-4 is assumed to be zero.

REV. 0 1 5 - 1 2

PDR3056 DATA DIVISION

DATA RECORDS

FUNCTION:

The DATA RECORDS clause serves only as documentation for the names of
data records and their associated file.

FORMAT:

mATA f ^CORD IS *\
L1JA1A ^RECORDS ARE J data-name-1 [, data-name-2]]

SYNTAX RULE:

Data-name-1 and data-name-2 are the names of data records. They
must be defined by 01 level-number Record Description entries and
follow the general rules for WORD FORMATION.

GENERAL RULES:

1. If the file contains more than one type of data record, each
type should be indicated by a data-name in this clause. These
records may be different in format. The order in which they are
listed is not significant.

2. Conceptually, all data records within a file share the same area,
regardless of the number of types of data records within the file.

15 - 13 November 1977

SECTION 15 PDR3056

CODE-SET

FUNCTION:

The CODE-SET clause specifies the character code set used to represent
data on the external media.

FORMAT:

[CODE-SET IS ASCII].

GENERAL RULE:

The CODE-SET clause serves only as documentation in this compiler,
reflecting the fact that both internal and external data is re
presented in ASCII code.

REV. 0 1 5 - 1 4

PDR3056 DATA DIVISION

RECORD DESCRIPTION

FUNCTION:

A Record Description entry describes all elementary and group items
in a record, and their relationship. It is comprised of a set of
Data Description entries, each of which defines the particular char
acteristics of a unit of data, utilizing a series of clauses to detail
such characteristics.

FORMAT 1:

T -, i data-name-1 level-number p I L L E R [REDEFINES data-name-2]

[OCCURS-Clause]

PICTURE
PIC

• IS picture-string]

[USAGE IS <

DISPLAY
COMPUTATIONAL
COMP
INDEX
COMPUTATIONAL-3
COMP-3

}]

J

[[SIGN IS] < ̂ ™LING \ [SEPARATE CHARACTER]]

SYNCHRONIZED
SYNC

LEFT
RIGHT]]

[<
JUSTIFIED RIGHr]

JUST

[BLANK WHEN ZERO]

[VALUE IS literal].

15 15 November 1977

SECTION 15 PDR3056

FORMAT 2:

QQ ,,•«.• /VALUE IS "\ . . . - . /"THRQUQA
88 condition-name; \yfiJ3& ARE J l i t e ra l -1 \$mj J

l i te ra l -2

/THROUGH^
\THRU J [literal-3 4 = ^ l i tera l -4] . . .

FORMAT 3 :

88 condition-name; | | ^ M J S 1 literal-1, [literal-n]...

SYNTAX RULES:

1. The level-number in Format 1 may contain a value of 01 through
30, or 77.

2. In Format 1, clauses can be written in any order with two ex
ceptions: The data-name-1 or FILLER clause must immediately fol
low the level-number; and the REDEFINES clause, when used, must
immediately follow the data-name-1 clause.

3. In Format 1, PICTURE clause must be specified for every ele
mentary item except when USAGE is described as binary (COMPUTATIONAL)
A group item cannot contain a PICTURE clause.

4. The OCCURS clause cannot be specified in a Data Description
entry which has an 01, 77, or 88 level-number.

5. Formats 2 and 3 are used only for condition-names which must
have a level-number 88. Formats 2 and 3 may not be combined for a
single, level 88 entry.

6. The words THRU and THROUGH are equivalent and interchangeable
Reserved Words.

GENERAL RULES:

1. A detailed discussion of each clause in the Data Description
entry appears under the appropriate clause heading on the following
pages.

2. A Record Description entry can appear in the File, Working-
Storage, or Linkage Section of the Data Division. All records in
each file referenced by a File Description entry (FD) must be
described by Record Description entries.

REV. 0 15 - 16

file:///THRU

PDR3056 DATA DIVISION

LEVEL-NUMBER

FUNCTION:

The level-number shows the position of a data-item within the hierarchy
of data in a logical record. It also identifies entries for condition-
names, and data items in the Working-Storage and Linkage Sections.

FORMAT:

level-number

SYNTAX RULES:

1. A level-number is required as the first element in each Data
Description entry (see Record Description).

2. Data Description entries subordinate to an FD entry must have
level-numbers 01 through 30, or 88.

3. Data Description entries in the Working-Storage and Linkage
Sections must have level-numbers 01 through 30, 77, or 88.

GENERAL RULES:

1. Level-numbers are used to subdivide a record so that each item
in the record may be referred to. A record can be divided, and each
subdivision further divided, until a basic level is reached which
cannot be further divided. An item at this basic level is called
elementary item. A record can itself be an elementary item.

2. A group consists of one or more consecutive elementary items;
groups can, in turn, be combined into other groups of two or more
group items. A group consists of a specified group item and all fol
lowing group and elementary items with level-numbers greater than
that of the specified group item, continuing until the next item
with a level-number less than or equal to that of the specified
group item is reached

3. Level-numbers range from 01, the most inclusive level, to 30,
the least inclusive level. Any level-number except 30 can denote
a group.

4. The level number 01 identifies the first entry in each Data
Description. Reference to level-number 01 data-name in the Pro
cedure Division causes the entire record to be accessible.

5. Multiple level 01 entries subordinate to one FD level indi
cator represent implicit redefinitions of the same area.

15 - 17 November 1977

SECTION 15 PDR3056

6. Special level-numbers have been assigned to certain entries
where there is no real concept of hierarchy:

A. Level-number 77 is assigned to identify noncontiguous
working storage or linkage data items. They may be used
only as described in Format 1 of the Data Description
entry.

Level-number 77 data items are independent elementary
items which cannot be subdivided.

B. Level-number 88 is assigned to entries which define condi
tion-names associated with a conditional variable. They
can be used only with Format 2 of the Data Description
entry.

Level 88 entries can contain individual values, series of
individual values, a range of values, or a series of value
ranges. Such entries cannot combine ranges and individual
values.

EXAMPLE:

01 Test-Area PIC X
88 Test-Value-1 Value '1'
88 Test-Value-2 Value '1', '2'
88 Test-Value-3 Value '1» thru '8'
88 Test-Value-4 Value '1' thru '4'
88 Test-Value-5 Value '1' thru f4', '6', '7'

In the example above, the last 88 level definition is
invalid.

A level 88 entry must be preceded by one of the following:

1. Another level 88 entry, where there are several con
secutive condition-names pertaining to an elementary item;

2. An elementary item.

Every condition-name pertains to an elementary item in such
a way that the condition-name may be qualified by the same
of the elementary item and the elementary item's qualifiers.
A condition-name is used in the Procedure Division in place
of a simple relational condition.

A condition-name may not pertain to an elementary item (a
conditional variable) requiring subscripts. In this case,
the condition-name, when written in the Procedure Division,
cannot be subscripted according to the same requirements
as the associated elementary item.

REV. 0 1 5 - 1 8

PDR3056 DATA DIVISION

The type of literal in a condition-name entry must be
consistent with the data type of the conditional variable.
In the following example, PAYROLL-PERIOD is the conditional
variable. The picture associated with it limits the value
of the 88 condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, one may write the procedural
condition-name test:

IF MONTHLY GO TO DO-MONTHLY

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a condition-name
entry must be expressed in the form of non-numeric literals,

15 - 19 November 1977

SECTION 15 PDR3056

DATA-NAME/FILLER

FUNCTION:

A data-name specifies the name of the data being described, FILLER spec
ifies an elementary item of the logical record which cannot be referred
to explicitly.

FORMAT:

fdata-name"*)
^FILLER J

SYNTAX RULE:

In the File, Working-Storage, and Linkage Sections of the Data
Division, a data-name or the keyword FILLER must be the first word
following the level-number in each Data Description entry.

GENERAL RULES:

1. FILLER can be used to name an elementary item in a record.
Under no circumstances can a FILLER item be referred to explicitly.
However, FILLER can be used as a conditional variable because such
use does not require explicit reference to the FILLER item, but to
its value.

2. A VALUE clause can be used with a FILLER item.

REV. 0 1 5 - 2 0

PDR3056 DATA DIVISION

REDEFINES

FUNCTION:

The REDEFINES clause allows the same computer storage area to be des
cribed by different Data Description entries.

FORMAT:

level-number < PJLLEIR f ; [REDEFINES data-name-2]

NOTE: Level-number, data-name-1 and the semicolon are not part of
the REDEFINES clause, but are included to show the context.

SYNTAX RULES:

1. The REDEFINES clause is optional; when specified, it must im
mediately follow data-name-1.

2. Level-numbers of data-name-1 and data-name-2 must be identical,
but must not be 77 or 88.

3. This clause must not be used in level-number 01 entries in the
File Section.

4. The Data Description entry for data-name-1 must not contain a
REDEFINES clause.

5. The Record Description entry for data-name-2 may not contain
an OCCURS clause, nor may data-name-1 be subordinate to an entry
which contains an OCCURS clause.

6. Data-name-2 can be qualified, but not subscripted.

GENERAL RULES:

1. Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered. In the
following example, redefinition of the data-name-2 area by data-
name-1 ends when data-name-3 is encountered:

02 data-name-2 PICTURE A(3).

02 data-name-1; REDEFINES data-name-2.

03 ITEM-A PICTURE A.

03 ITEM-B PICTURE AA.

02 data-name-3 PICTURE X.

15 - 21 November 1977

SECTION 15 PDR3056

2. The entries giving the new description of the area must not
contain VALUE clauses except in condition-name entries.

NOTE: The REDEFINES clause specifies the redefinition of a storage
area, not of the data items therein contained.

Redefinition to a depth greater than one level is not permitted (see
SYNTAX RULE 4, above). Thus, the nested REDEFINES outlined below is
invalid:

02 A PIC X(10).

02 B REDEFINES A.

03 C PIC X(5).

03 D REDEFINES C.

04 E PIC X(5).

03 F PIC X(5).

Identical results may be achieved with the following definition:

02 A PIC X(10).

02 B REDEFINES A.

03 C PIC X(5).

03 F PIC X(5).

02 FILLER-1 REDEFINES A.

03 D.

04 E PIC X(5).

03 FILLER PIC X(5).

Notice that the clauses B REDEFINES A, and FILLER-1 REDEFINES A
are at the same level. Such definition is valid.

REV. 0 15 - 22

PDR3056 DATA DIVISION

OCCURS

FUNCTION:

The OCCURS clause permits the definition of related sets of repeated
data, such as tables, arrays, lists, supplying required information for
the application of subscripts or indexes.

FORMAT:

OCCURS integer-1 TIMES [INDEXED BY index-name-1 [, index-name-2] ...]

SYNTAX RULES:

1. The OCCURS clause must not be used in any Data Description entry
having a level number 01, 77, or 88.

2. The maximum OCCURS specification (integer-1) is 1024.

3. When the OCCURS clause is used without the INDEXED BY option,
the data-name which is the subject of the OCCURS clause is referred
to by subscripting (see General Rule 4 below). If this data-name
is the name of a group item, all data-names belonging to the group
must be subscripted whenever used.

4. An INDEXED BY phrase is required if the subject of this entry,
or an entry subordinate to this entry, is to be referred to by
indexing. Neither index-name-1 nor index-name-2 are defined else
where, since their allocation and format are dependent on the system;
not representing data, the index-names cannot be associated with
any data hierarchy (see General Rule 5 below).

GENERAL RULES:

1. The OCCURS clause defines tables and other homogenous sets of re
peated data items. Whenever the clause is used, the data-name that
is its subject must be either subscripted or indexed whenever it is
referenced.

2. Except for the OCCURS clause, all data description clauses asso
ciated with an item whose description includes an OCCURS clause,
apply to each occurrence of the item described.

3. Integer-1 represents the exact number of occurrences of the
subject entry.

4. When INDEXED BY option is omitted, subscripting is used to indi
cate an individual item within a list, or within a table of like
items which do not have individual data-names.

15 - 23 November 1977

SECTION 15 PDR3056

The format for a subscript is:

data-name (subscript-1, [subscript-2 [, subscript-3]])

The subscript can be represented either by a positive numeric
literal or by a data-name. The data-name must be a numeric ele
mentary item which represents an integer. The data-name may be
qualified but not subscripted. The subscript must be delimited
by a pair of parentheses following the table element data-name.
When two or more subscripts are required, they are written in
the order of successively less inclusive dimensions of the data
organization, and should be separated by commas. A maximum of
three levels of subscripting is permitted for any given data item.

The value of the subscript indicates the position of the item in
a table. The lowest possible value is a subscript is 1, indi
cating the first position in the table. Subsequent positions are
indicated by sequential values 2, 3, 4 ..., up to the highest
permissible value, which is the maximum number of occurrences of
the item specified in the OCCURS clause.

A data-name may not be subscripted if it is being used for any
of the following functions:

A. When it is being used as a subscript.

B. When it appears as the defining name of a Data Description
entry.

C. When it appears as data-name-2 in a REDEFINES clause.

A subscript value is changed via the WW, ADD, or SUBTRACT verbs.
The SET verb cannot be used on a subscript data-name. (See TABLE
HANDLING.)

5. When INDEXED BY is used, an index is assigned to a table of
like elements, with individual items in the table being identified
by index-name.

REV. 0 15 - 24

PDR3056 DATA DIVISION

The general format for indexing is:

(data-name \ (/index-name-1 [(±) literal-2] "I
condition-nameJ ^ \literal-l J

» /index-name-2 [{+} literal-4] 1
\literal-3 J

findex-name-3 [{+} literal-6]
\ literal-5 } ...)

An index-name is declared not by the usual method of level number,
name, and Data Description clauses, but implicitly by appearance
in the "INDEXED BY index-name" appendage to an OCCURS clause. Index-
name is equivalent to an index-item. The compiler assigns a full
word for each index-name defined.

An index-name must be uniquely named. An index item may only be re
ferred to by a SET statement, a CALL statement's USING list, a Pro
cedure header USING list, as the variation item in PERFORM VARYING
and PERFORM UNITL, or in a relational condition. In all cases, the
process is equivalent to dealing with a binary word integer subscript.
(See TABLE-HANDLING.)

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified by a parenthetic statement
following data-name, in which index-name is followed by the operator
+ or - and an unsigned integer numeric literal.

When a statement referring to an indexed table element is being exe
cuted, the value in the index referred to by the index-name must be
from 1 to the highest permissible occurrence number specified in the
OCCURS clause. This restriction applies also to the value resulting
from relative indexing. See TABLE HANDLING for more detailed discus
sion.

15 25 November 1977

file:///literal-l
file:///literal-3

SECTION 15 PDR3056

PICTURE

FUNCTION:

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

FORMAT:

/PICTURE'!

\PIC J
[< Sir) IS picture-string]

SYNTAX RULES:

1. A PICTURE clause can be specified only at the elementary item
level.

2. A picture-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allow
able combinations determine the category of the elementary item.

3. The maximum number of character positions allowed in the
picture-string is 30. As an example, PICTURE X(89) consists of
five PICTURE characters.

4. The PICTURE clause must be specified for every elementary item
except binary items.

5. PIC is a valid abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry.

GENERAL RULES:

1. Data. Five categories of data can be described with a PICTURE
clause: Alphabetic, numeric, alphanumeric, alphanumeric edited,
and numeric edited.

A. Alphabetic:

• Picture-string can only contain the characters A and B;
and

• Item contents must be any combination of the letters
of the English alphabet and the COBOL space character.

B. Numeric:

• Picture-string can only contain the symbols 9, P, S,
and V. The number of digit positions which may be re
presented by picture-string is from 1 to 18;
and

REV. 0 15 - 26

PDR3056 DATA DIVISION

• Item contents must be a combination of the digits 0
through 9. These may be signed, or not. If signed,
the item may be positive or negative.

C. Alphanumer i c:

• Picture-string is a combination of data description
characters X, A, or 9, and the item is treated as if
the string contained all X's. Alphanumeric picture-
strings may not employ all 9's or all A's;
and

• Item contents may be any character from the computer's
ASCII character set.

D. Alphanumeric edited:

• Picture-string is restricted to certain combinations of
the following symbols: A, X, 9, B, 0, /;
and

• Item contents are any character from the computer's
ASCII character set.

E. Numeric Edited:

• The picture-string is a certain combination of the edit
ing symbols: Z . CR DB , $ + * B 0 = - / 9 V P;
and

• The picture-string must contain at least one of the
editing symbols in conjunction with numeric symbols;
and

• Item contents must be one of the digits.

2. Size. The size of an elementary item (the number of character
positions occupied by the item in standard data format) is deter
mined by the number of allowable symbols which represent character
positions.

An integer, enclosed in parentheses, following the symbols A , X
9 P Z * B / 0 + - o r the currency symbol, indicates the number of
consecutive occurrences of that symbol. The following symbols can
appear only once in a given PICTURE: S V . CR DB.

3. Decimal-Point Clause. When DECIMAL-POINT IS COMMA is specified,
the explanations for period and comma are understood to apply to
comma and periods, respectively.

15 - 27 November 1977

SECTION 15 PDR3056

4. Symbols. Symbols used in a picture-string to define an ele
mentary item have the following functions (see also Appendix G,
SYMBOLS).

A - Each A represents a character position which contains only
a letter of the alphabet, or a space.

B - Each B represents a character position into which the space
character will be inserted.

P - Each P indicates an assumed decimal scaling position. It
specifies the location of an assumed decimal point when the
point is not within the number that appears in the data
item. The P is not counted in the size of the data item,
but is counted in determining the maximum number of digit
positions (18) in numeric edited items or numeric items.

The scaling position character P may appear only to the left
or right of the other characters in the string as a con
tinuous string of P's within a PICTURE description. The
sign character S and the assumed decimal point V are the
only characters which may appear to the left of a leftmost
string of P's. Since the scaling position character P
implies an assumed decimal point (to the left of the P's
if the P's are leftmost PICTURE characters, and to the right
of the P's if the P's are rightmost PICTURE characters),
the assumed decimal point symbol V is redundant as either
the leftmost or rightmost character within such a PICTURE
description.

If a field in memory contains the digits 37, and the
picture-string for the field is PPP99, the field has the
implied value of .00037. The same field, with a picture-
string 99000 has an implied value of 37000. In both
instances, only digits 37 are actually stored in memory.

S - The picture-string symbol S indicates the presence of a sign
in a data item, but implies nothing about the actual format
or location of the sign in storage.

The symbol S is not counted in determining the size of the
elementary item, unless the entry is subject to a SIGN
clause. (See SIGN.)

When used, the S symbol must be written as the leftmost
character in picture-string.

V - The character V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide informa
tion concerning the alignment of items involved in computa
tions. Storage is never reserved for the character V. Only
one V, if any, is permitted in any single picture.

REV. 0 1 5 - 2 8

PDR3056 DATA DIVISION

9 -

Each X represents a character position which contains any-
allowable character from the computer's character set.

Each character Z is a replacement character which represents
a digit position. Leading data item zeros are suppressed
and replaced by blanks if corresponding picture-string posi
tions are defined by Z. Zero suppression terminates upon
encountering the decimal point (.), or a non-zero digit.

Each Z is counted in the size of the item.

Each 9 in a picture-string represents a character position
which contains a numeral and is counted in the size of the
item.

Each stroke, or virgule (/), in the picture-string represents
a character position into which the stroke character will be
inserted. / is counted in the size of the item.

The comma character (,) specified insertion of a comma
between digits. Each insertion character is counted in the
'size of the data item, but does not represent a digit posi
tion. The comma may also appear in connunction with a
floating string.

A period character (.) in a picture-string is an editing
symbol representing the decimal point for alignment purposes.
The character also serves to indicate the position for
decimal point insertion.

Numeric character positions to the right of an actual
decimal point in a PICTURE must consist of characters of one
type.

The period character (.) is counted in the size of the item.

For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COMMA is stated
in the SPECIAL-NAMES paragraph. In this exchange, the rules
for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause.

CR
DB

>

The decimal insertion character (.) must not be the last
character in the picture-string.

These symbols are used as editing sign control symbols and
represent the character position into which the editing sign
control symbol is placed. The symbols are mutually exclu
sive in any one picture-string, and each character used in
the symbol is counted in determining the size of the data
item, i.e., CR and DB = 2 character positions each; + and
- = 1 character position each.

15 29 November 1977

SECTION 15 PDR3056

* - Each * (asterisk) in a picture-string is a replacement char
acter. Leading data item zeros are suppressed and replaced
by *. Each * is counted in the size of the item.

5. Editing.

A. The PICTURE clause provides two basic methods for editing:
Character insertion and character suppression/replacement.
The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
table below specifies which type of editing may be performed
upon a given category:

CATEGORY OF DATA

Alphabetic

Numeric

Alphanumeric

Alphanumeric Edited

Numeric Edited

TYPE OF EDITING

Simple insertion 'B' only

None

None

Simple insertion 0, B and /

All, subject to rules in Rule 3 below

Table 15-2. Categories of Data and Editing

B. Insertion Editing includes the following types:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

1) Simple insertion editing utilizes B 0 , / as insertion
characters. The insertion characters are counted in
the size of the item and represent the position in the
item into which the character will be inserted.

2) Special insertion editing refers to decimal point inser
tion (.) and resulting receiving item alignment. The
insertion character used for the actual decimal point is
counted in the size of the item. The use of the assumed
decimal point - represented by the symbol V, and the use
of an actual decimal point - represented by the inser
tion character, is disallowed in the same picture-string;

REV. 0
15 30

PDR3056 DATA DIVISION

the two are mutually exclusive. The result of special
insertion editing is that the insertion character is
placed in an item in the same position in which it
appears in the picture-string.

3) Fixed insertion editing employs the currency sign and
editing sign control symbols as insertion characters.
The editing sign control symbols are: + - CR DB.

Only one currency symbol, and only one of the editing
sign control symbols, can be used in a given picture-
string. When the symbols CR or DB are used, they re
present two character positions in determining the size
of the item. They must represent the rightmost char
acter positions to be counted in the size of the item.
The symbol + or -, when used, must be either the left
most or rightmost character position to be counted in
the size of the item. The currency symbol must be the
leftmost character position to be counted in the size of
the item, except that it can be preceded by either a +
or a - symbol. Fixed insertion editing results in the
insertion character occupying the same character posi
tion in the edited item as it occupied in the picture-
string. Editing sign control symbols produce the
following results depending upon the value of the data
item:

EDITING SYMBOL IN
PICTURE-STRING

+

-

CR

DB

RESULT

DATA ITEM
POSITIVE OR ZERO

+

space

2 spaces

2 spaces

DATA ITEM
NEGATIVE

-

-

CR

DB

Table 15-3. Results of Sign Control Symbols in Editing

4) Floating insertion editing utilizes the currency symbol
and editing sign control symbols + or - as floating
insertion characters. These are mutually exclusive in
a given picture-string.

15 31 November 1977

SECTION 15 PDR3056

A floating picture-string is defined as a leading, con
tinuous series of either $ + or -, or a string composed
of one such character interrupted by one or more inser
tion commas and/or decimal point.

For example:

++++

+(8).++
(fit1 <t*(t<t <t<t*t
4>4> , Cp Cp 4 > . 4> 4> ip

Floating insertion editing is indicated in a picture-
string by using a string of at least two of the float
ing insertion characters. The leftmost character of
the floating insertion string represents the leftmost
limit of the floating symbol in the data item. The
rightmost character of the floating string represents
the rightmost limit of the floating symbols in the data
item.

The second floating character from the left represents
the leftmost limit of the numeric data which can be
stored in the data item. Non-zero numeric data may
replace all the characters at or to the right of this
limit.

In a picture-string, there are only two ways of repre
senting floating insertion editing. One way is to re
present any or all of the leading numeric character
positions on the left of the decimal point by the
insertion character. The other way is to represent all
of the numeric character positions in the picture-string
by the insertion character.

If the insertion characters are only to the left of the
decimal point in the picture-string, the result is that
a single floating insertion character will be placed
into the character position immediately preceding the
first non-zero digit in the data item. If all data
item digits to the left of the decimal are zero, the
floating insertion character will be placed into the
character position immediately preceding the decimal
point. The character positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the picture-string
are represented by the insertion character, the result
depends upon the value of the data. If the value is
zero, the entire data item will contain spaces.

If the value is not zero, the result is the same as
when the insertion character is only to the left of the
decimal point.

REV. 0 1 5 - 3 2

PDR3056 DATA DIVISION

To avoid truncation, the minimum size of the picture-
string for the receiving data item must be the number
of characters in the sending data item, plus the number
of non-floating insertion characters being edited into
the receiving data item, plus one for the floating
insertion character. That is, a floating string con
taining n + 1 occurrences of $ or + or - defines n digit
positions.

In the following examples, # represents a blank in the
developed items.

EXAMPLES:

Picture-string Numeric Value Developed Item

$$$999 14 W*$014
--,999 -456 W$WflflM56

14 y>y>$u

A floating string need not constitute the entire
PICTURE of a report item, as shown in the preceding
examples. However, the characters to the right of a
decimal point and up to the end of a PICTURE, excluding
the fixed insertion characters +, -, CR, DB (if present),
are subject to the following restrictions:

Only one type of digit position character may
appear. That is, Z * 9 and floating-string digit
position characters $ + - are mutually exclusive.

If any of the numeric character positions to the
right of a decimal point is represented by + or -
or $ or Z, then all the numeric character positions
in the PICTURE must be represented by the same
character.

The PICTURE character 9 can never appear to the left
of a floating string, or replacement character. In
fact, nothing can precede a floating string.

When a comma appears to the right of a floating
string, the string character floats through the
comma in order to be as close to the leading digit
as possible.

C. Suppression/replacement editing includes two types: Zero
suppression and replacement with spaces, and zero suppres
sion and replacement with asterisks.

Floating insertion editing and editing by zero suppression/
replacement are mutually exclusive in a PICTURE clause.

1 5 - 3 3 November 1977

SECTION 15 PDR3056

The suppression of leading zeros in numeric character posi
tions is indicated by the use of the alphabetic character
Z, or the character * (asterisk) as suppression symbols in
a picture-string. These symbols are mutually exclusive in
a given picture-string. Each suppression symbol is counted
in determining the size of the item. If Z is used, the
replacement character will be the space. If the asterisk
is used, the replacement character will be *.

Zero suppression and replacement are indicated in a picture-
string by one or more of the allowable symbols (Z or *) ,
representing leading numeric character positions. These,
in turn, are to be replaced when the associated character
position in the data contains a zero. Any simple insertion
character embedded in the string of symbols, or to the
immediate right of this string, is part of the string.

The two ways of representing zero suppression in a character-
string are:

Represent any or all leading numeric character positions
to the left of the decimal point by suppression symbols;

Represent all numeric character positions in the picture-
string by suppression symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data which corresponds
to a symbol in the string is replaced by the replacement
character. Suppression terminates either at the first non
zero digit in the data represented by the suppression symbol
string, or at the decimal point, whichever is first.

If all numeric character positions in the picture-string are
represented by suppression symbols, and the value of the
data is not zero, the result is the same as if the suppres
sion characters were only to the left of the decimal point.
If the value is zero, the entire data item will be spaces if
the symbol is Z, or all asterisks (except for the actual
decimal point) if the symbol is *.

D. A picture-string must consist of at least one of the char
acters Z A * X 9 , or at least two consecutive appearances
of the characters + - $.

The examples below illustrate the use of the PICTURE clause.
In each example, a movement of data is implied, as indicated
by the column headings.

REV. 0
15 - 34

PDR3056 DATA DIVISION

r
Source Area

PICTURE
Data
Value

9(5) 12345

9(5) 00123

9(5) 00000

9(4)V9 12345

V9(5) 12345

S9(5) 00123

S9(5) -00001

S9(5) 00123

S9(5) 00001

9(5) 00123

9(5) 00123

S9(5) 12345

S999V99 02345

S999V99 00004

S9(5) -12345

Receiving Area

PICTURE Edited Data

$$$,$$9.99 $12,345.00

$$$,$$9.99 $123.00

$$$,$$9.99 $0.00

$$$,$$9.99 $1,234.50

$$$,$$9.99 $0.12

.99 123.00

.99 -1.00

+++++++.99 +123.00

.99 1.00

+++++++.99 +123.00

.99 123.00

*******.99CR **12345.00

ZZZVZZ 2345

ZZZVZZ 04

*******.99CR **12345.00CR

Figure 15-1. Examples of PICTURE Clauses

15 - 35 November 1977

SECTION 15 PDR3056

USAGE

FUNCTION:

The USAGE clause describes the form in which numeric data is represented.

FORMAT:

DISPLAY

[USAGE IS I j i ^gx

COMPUTATIONAL

]
COMPUTATIONAL-3
CCM^S

SYNTAX RULES:

1. COMP is a valid abbreviation for COMPUTATIONAL.

2. COMP-3 is a valid abbreviation for COMPUTATIONAL-3.

3. The PICTURE clause cannot be used if USAGE is specified as
COMPUTATIONAL or INDEX.

GENERAL RULES:

1. The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item in the
group. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group item to which it belongs.

2. A COMPUTATIONAL item can represent a value to be used in computations
and must be numeric. When a group item is described as COMPUTATIONAL,
only the elementary items in that group are COMPUTATIONAL; the group
item itself cannot be used in computations.

3. DISPLAY is the system default if the USAGE clause is not specified.

4. If USAGE is specified as COMPUTATIONAL for an item, and a PICTURE
clause is included for the same item, the computer will ignore the USAGE
clause.

NOTE: See Data Representation for additional information.

REV. 0 1 5 - 3 6

PDR3056 DATA DIVISION

SIGN

FUNCTION:

The SIGN clause specifies the position and the mode of representation of
the operational sign when it is necessary to describe these properties
explicitly.

FORMAT:

[SIGN IS J j ™ ^ I N G f ES E P A R A T E CHARACTER]]

SYNTAX RULES:

1. The SIGN clause may be specified only for a numeric Data Description
entry whose PICTURE contains the character S, or for a group item contain
ing at least one such numeric Data Description entry. If an S is not
present in the data item picture-string, the item is considered unsigned
(capable of storing only absolute values), and the SIGN clause is prohib
ited.

2. Numeric Data Description entries to which the SIGN clause applies
must be described by USAGE IS DISPLAY.

3. Only one SIGN clause can apply to any given numeric Data Description
entry.

GENERAL RULES:

1. When S appears in a picture-string, but no SIGN clause is included
in an item's description, the system default is SIGN IS TRAILING.

2. If the optional SEPARATE CHARACTER phrase is not present, then:

A. The operational sign is presumed associated with the leading
(or, respectively, trailing) digit position of the elementary
numeric data item.

B. The character S in picture-string is not counted in determining
item size.

3. If the SEPARATE CHARACTER phrase is present, then:

A. The operational sign will be presumed the leading (or, respect
ively, trailing) character position of the elementary numeric
data item; this character position is not a digit position.

B. The letter S in a picture-string is counted in determining the
size of the item (in terms of standard data format characters).

C. The operational signs for positive and negative are the standard
data format characters + and -, respectively.

15 - 37 November 1977

SECTION 15 PDR3056

4. Every numeric Data Description entry whose PICTURE contains the
character S is a signed numeric Data Description entry. If a SIGN
clause applies to such an entry and conversion is necessary for
purposes of computation or comparisons, conversion takes place auto
matically.

5. Table 15-4 depicts sign representations for the various SIGN
clause options.

SIGN Clause

TRAILING

LEADING

TRAILING SEPARATE

LEADING SEPARATE

Sign Representation

Embedded in rightmost byte

Embedded in leftmost byte

Stored in separate rightmost byte

Stored in separate leftmost byte

Table 15-4. Sign Representation

6. At a group level, an attribute of SEPARATE will cause a group type
error at compile-time. Such attributes must be specified at the ele
mentary level.

REV. 0 15 - 38

PDR3056 DATA DIVISION

SYNCHRONIZED

FUNCTION:

The SYNCHRONIZED clause specifies the alignment of an elementary item on
its natural addressing boundaries in the computer memory.

FORMAT:

SYNCHRONIZED
SYNC

LEFT
RIGHT

SYNTAX RULES:

1. SYNC is a valid abbreviation for SYNCHRONIZED.

2. In this compiler, the SYNCHRONIZED specification is treated as
commentary.

15 - 39 November 1977

SECTION 15 PDR3056

JUSTIFIED

FUNCTION:

The JUSTIFIED clause specifies nonstandard positioning of data within a
receiving data item.

FORMAT:

JUSTIFIED
JUST RIGHT

SYNTAX RULES:

1. This clause can be specified only at the elementary level.

2. JUST is a valid abbreviation of JUSTIFIED.

3. The JUSTIFIED clause cannot be used for data items described as
numeric, or for those for which editing is specified.

GENERAL RULES:

1. When the JUSTIFIED clause option is taken, values are stored in
right-to-left fashion. The clause is effective in connection with a
MOVE statement. In a MOVE operation, if the sending field is shorter
than the receiving field, space filling occurs in the left-most posi
tions. If the sending field is longer than the receiving field, the
left-most characters are truncated.

2. When the JUSTIFIED clause is omitted, Standard Alignment Rules
apply.

REV. 0 15 " 40

PDR3056 DATA DIVISION

BLANK WHEN ZERO

FUNCTION:

The BLANK WHEN ZERO clause permits the blanking of an item when its value
is zero.

FORMAT:

BLANK WHEN ZERO

SYNTAX RULE:

The BLANK WHEN ZERO clause can be used only for an elementary numeric
or numeric edited (report) item.

GENERAL RULES:

1. When used, the BLANK WHEN ZERO clause specifies that the data item
will be set to blanks when the value is all zeros. Leading zeros are
not suppressed by this clause.

2. If the clause is specified for a numeric item, the category of the
item is interpreted as numeric edited.

3. The BLANK WHEN ZERO clause may be used in conjunction with editing
characters. In such instances, editing occurs according to PICTURE
specifications if data item values are not zero. For example, if a
data item value is 0000.04, and the editing PICTURE is ****.99 BLANK
WHEN ZERO, the result will be ****.09. Since leading zeros are not
affected by the BLANK WHEN ZERO clause, the asterisk editing char
acters take precedence, and leading zeros are replaced by the character

15 - 41 November 1977

SECTION 15 PDR3056

EXAMPLES: Oblank)

VALUE

0012.34
0123.45
01.2345
0000.00
0000.00
0012.34
0000.04
0000.00
0000.00
0000.04
0000.00
0000.04

DESCRIPTION OF
OUT-COST

9999.99
$9999.99
$9999.99

**** qq
**** qq
ifkfck qq

$$$$$.99
$$$$$.99

ZZZZVZZ
ZZZZVZZ
ZZZZ.ZZ
ZZZZ.ZZ

BLANK WHEN
BLANK WHEN
BLANK WHEN

BLANK WHEN
BLANK WHEN
BLANK WHEN
BLANK WHEN
BLANK WHEN
BLANK WHEN
BLANK WHEN
BLANK WHEN

ZERO
ZERO
ZERO

ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO

RESULT

0012.34
$0123.45
$0001.23

* * * * QQ

$$$$$$$
**12.34

$.04
$]z$$$]zf$$
yifflfififitfty

4
y$$$$$y>

.04

Figure 15-2. Examples: BLANK WHEN ZERO

REV. 0 15 42

PDR3056 DATA DIVISION

VALUE

FUNCTION:

The VALUE clause defines the value of constants, the initial values of
WORKING STORAGE items, and the values associated with a condition-name.

FORMAT 1:

VALUE IS literal b
FORMAT 2

VALUE IS l:
literal-1 [literal-2 ...]
literal -if THRU 1literal-2

1THROUGH J

SYNTAX RULES:

1. The words THROUGH and THRU are equivalent.

2. The VALUE clause is not permitted in a Data Description entry speci
fying an OCCURS or REDEFINES clause, or in any entry subordinate to one
specifying an OCCURS or REDEFINES clause.

3. Numeric literals in a VALUE clause must have a value which is within
the range of values indicated by the PICTURE clause, and must not have a
value which would require truncation of nonzero digits. Non-numeric
literals in a VALUE clause must not exceed the size indicated by the
PICTURE clause.

4. The type of literal written in a VALUE clause depends on the type of
data item, as specified in the data item formats earlier in this text.
For edited items, values must be specified as non-numeric literals. A
type conflict, producing a compile time error, will arise if a figurative
constant or literal is not compatible with the PICTURE. For example,
PICTURE X VALUE ZERO will produce a type conflict error, since ZERO is
a numeric figurative constant, but PICTURE X specifies an alphanumeric
item.

5. In a data item with a VALUE clause, the size of the data item cannot
exceed 128 characters; e.g., PIC X(129) VALUE SPACES is invalid.

6. A VALUE clause may not occur in the FILE SECTION of the Data Division
except in level 88 condition-name entries.

15 - 43 November 1977

SECTION 15 PDR3056

GENERAL RULES:

1. The positioning of the literal within a data area is the same as
would result from specifying a MOVE of the literal to a data area.

2. The VALUE clause may be specified at the group level in the form
of a correctly sized, non-numeric literal, or a figurative constant.

3. When an initial value is not specified, no assumption should be
made regarding the initial contents of an item in Working-Storage.

4. A figurative constant may be specified in both Format 1 and Format
2 instead of a literal.

5. Format 1 is required to define an initial value for a data item
or a constant.

6. Format 2 is required for condition-name entries. The VALUE clause
and the level-number 88 condition-name itself are the only two items
permitted in the entry. The characteristics of a condition-name are
implicitly those of its conditional variable. Wherever the THRU phrase
is used, literal-1 must be less than literal-2, literal-3 less than
literal-4, etc.

7. Rules governing the VALUE clause differ in the respective sections
of the Data Division:

A. In the File and Linkage Sections, the clause can be used only
in condition-name entries.

B. In the Working -'Storage Section, the clause must be used in
condition-name entries; it can also be used to specify the
initial value of any other data item, with the result that
the item assumes the specified value at the start of the
object program.

8. Level 88 condition-name entries specify a value, list of values, or
a range of values which an elementary item may assume.

A. A level 88 entry must be preceded either by another level 88
entry (in the case of several consecutive condition-names per
taining to an elementary item) or by an elementary item.

B, Every condition-name pertains to an elementary item in such a
way that the condition-name may be qualified by the name of
the elementary item and the elementary item's qualifiers.

REV. 0 1 5 - 4 4

PDR3056 DATA DIVISION

C. A condition-name is used in the Procedure Division in place
of a simple relational condition.

D. A condition-name may pertain to an elementary item (a condi
tional variable) requiring subscripts. In such a case, the
condition-name, when written in the Procedure Division, must
be subscripted according to the same requirements as the
associated elementary item.

E. 88 Level specifications can contain individual values, series
of individual values, a range of values, or a series of ranges
of values, but not a combination of ranges and individual
values. (See also LEVEL-NUMBER.)

EXAMPLE:

02 PAYROLL-PERIOD PICTURE IS 9.

88 WEEKLY VALUE IS 1.

88 SEMI-MONTHLY VALUE IS 2.

88 MONTHLY VALUE IS 3.

Using the above description, one may write the procedural
condition-name test:

IF MONTHLY GO TO DO-MONTHLY.

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

NOTE: For an edited elementary item, values in a condition-name
entry must be expressed in the form of non-numeric literals.

15 - 45 November 1977

SECTION 15 PDR3056

WORKING-STORAGE SECTION

FUNCTION:

The WORKING-STORAGE SECTION of the Data Division describes noncontiguous
data (level 77), and records which are not part of external files, but
are developed and processed internally. This section also contains data
assigned fixed or constant values.

FORMAT:

[WORKING-STORAGE SECTION.

level 77 data description entry
data item description entry

SYNTAX RULES:

1. The Working-Storage Section is optional. If included, it must
begin with the words WORKING-STORAGE SECTION, followed by a period and
a space.

2. Noncontiguous item names and record names in the Working-Storage
Section must be unique; they cannot be qualified. Subordinate data-
names need not be unique if they can be made unique by qualification.

3. The level-number 77 is applied to noncontiguous elementary data
items, each defined in a separate data description entry which must
contain the level-number 77, a data-name, and a PICTURE clause or
USAGE IS INDEX clause, with other optional data description clauses
as necessary.

4. Data items in the Working-Storage Section with a definite hierarchic
relationship to one another must be grouped into records according to the
rules for formation of record descriptions. Any clause used in a record
description in the File Section can be used in a record description in
the Working-Storage Section (see Record Description).

GENERAL RULES:

1. Working-Storage items described in this section include the
following:

A. Noncontiguous elementary items with the level-number of 77.
These items and constants have no hierarchical relationship to one
another and cannot be grouped into records because they cannot be
further subdivided.

REV. 0 1 5 - 4 6

PDR3056 DATA DIVISION

B. Data items in records not associated with an input-output device
and not part of external data files, but developed and processed
internally. These items employ level numbers 01 through 30.

2. VALUE clauses, prohibited in the FILE SECTION, are permitted through
out Working-Storage to specify the initial value of an item, except for
an index data item.

15 - 47 November 1977

SECTION 15 PDR3056

LINKAGE SECTION

FUNCTION:

The Linkage Section describes data previously defined in a calling program,
which is available to a called program.

FORMAT:

[LINKAGE SECTION.

ascription entry level 77 data description entry
data item description entry

SYNTAX RULES:

1. The Linkage Section is optional. If included, it must begin with
the words LINKAGE SECTION followed by a period and a space.

2. Each Linkage Section record-name and noncontiguous item name must
be unique within the called program; it cannot be qualified.

3. Level-number 77 refers to noncontiguous elementary data items, with
no hierarchic relationship to one another, and therefore not grouped
into records. Each level-number 77 data item is defined in a separate
data description entry which must include the level-number 77, a data-
name, and a PICTURE clause or USAGE IS INDEX clause. Other optional
data description clauses may be included as necessary.

4. Data items in the Linkage Section, which have a definate hierarchic
relationship to one another, must be grouped into records according to
the rules for formation of Record Descriptions.

5. The VALUE clause must not be specified in the Linkage Section
except in level 88 condition-name entries.

GENERAL RULES:

1. The Linkage Section of the Data Division is meaningful if and
only if the object program is to function under the control of a CALL
statement, and the CALL statement in the calling program contains a
USING phrase.

2. The Linkage Section is used to describe data which is available
through the calling program, but is to be referred to in both the
calling program and the called program. No space is allocated in the
program for data items referenced by data-names in the Linkage
Section of that program. Procedure Division references to these data
items are resolved at load time by equating the reference in the called
program to the location used in the calling program.

REV. 0 1 5 - 4 8

PDR3056 DATA DIVISION

3. Data items defined in the Linkage Section of the called pro
gram may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USING phrase of the Procedure Division header, or are subordinate
to such operands, and the object program is under the control of
a CALL statement which specifies a USING phrase.

4. A Linkage Section example is presented in Section 17, INTER-
PROGRAM COMMUNICATION.

15 - 49 November 1977

OS - ST 0 'AHtf

1 '

^BjWS? ,3'nfr

1 '.sWws sr .9|mwf~
: i T 1 " . _ _ T 3 :35

1 ! 1 ']3Z)tM& 3np

I I 1 '<D 3PP
1 1 1

1 1
'

- i ;

4 -r " + '(

1 1

_ l___ , j n
1 !' 1

1

1

! i

!

TTTJI t !___
! 1 j , /
j :; qpwav.i£

!
i ! !
M i l
i 1 1 1

1 ! 1 !
: ' 1 j

'
I a^vii
!
! i
i I i
1
1 _L 'qiJ

Zl 89 t>9 09 9S 39 8fr

~Z = 1 3 ^ 1 4U3UJ

1 ~ \ r--T™p~H—p - - p - - - -
1 ' ' l r_L I __T_ __ i_T _ j L i l t __ _ p/v '7s .a-»-fM^ii i - a ^ p u.| j

U>x p w a i l d syt|i»Jify-.3i(ia' LLj
V\ b 3^u-D|3d anvii-jqi.-jajs |LL|

. U i - t i l l 1

w/\ t.3»niDpa to^fLi-pb |LJL| i 6i
! 1 1 'Moi . i^S l ^ t f ^ o ^ S - P K ^ ^ 8 l l

| *(or)X jpfi i 'M)ni|d | W i ! I , ! /ji
; -J(l*)x b&a SB $! I,1 1 1 9|i

' (W * j ^3d ' 3 * Zi<̂ i ! "'"'sll "

10)* ^ .J^.fe J . | 1 1 ' V t t - 3 1 ^ ! ^ ! ci
,S2)X ^ (\ 1 3f5i n u f ^ | : I 1 31
?L)X; DJ14 »LLtt-A W^J5IQ."" |*$ M | !' 11

f ! i ' T.-OT ^ ! # ' 01
" (j o z l) x 390^-^i^ ' a 3 i p j l i 1 0 , I 60
! -iCOt awoidi ' { ^ 4 l ! W ! so 1 ' U 3|^f\i^4 'pJIV^ 1 7^ I z|0

• K w 3PviarJ~ "yp^i i$ \ ' i 9jo n~
•|<>|)X SaniDId! 'M-3"3 *|p 1 ! so ' " " "
1 *x, 3an.l03jd i ' &3 "n id iZtjb 1 j t\o

•|(Js|?L)X a a n i ^ i a ' | ^ » < i ^ '*$ ' ' ; co~~^
j ! -x 3an±-Dic\ ' a a - n i U %$] |- — 2 0" '

'Xj* ^(ra i a n i i i *$& | |] 1 "ijo'"'
(£"«)* " ^ 0^tfN|-X«I^ ti<P \\ 1 | 1
1, [;k # a L i 3T^ *£ ! 1 1 :!
\ h | t > q ia .3H*|M-iiq|vr\ Sjb | | 1

' ^ w W ' ! i
1 ' U)X W ^M3NMftd r ^ J 1 i

1 ^ ' ^-3|^J3j^-A3pjiP-3i^CI [Zp/1, |olZ
' , * I | M W x 5ft *m*0 j j ' j6|i

aijrpxiMpt% sq ai|-3 ijijd db, smvA j si
» 3i3V Q3'wb.3pj T33|VI j ' p h l l a - ^ l i p ^ n f l i <j^ \i\

'C|8)* " ^ d I f ' i f̂ M T$ i | 1 91 1
• C ^ X O l d l̂ -3WWiH|(J $ | j l sji

" O v X t)I|d 'Tp -BLJLfcJfA* ^ ! | 1 M
*|tj<t-Q*Vib T$ 1 EI j

'(j(S)x aapi-ajid i ' b - y ^ - c ^ ^ JT$ n \
•,TJ.¥JNJIs sji <EI-|3"\fid dO J3nhfv̂ vj 11 |

ryV4.̂ i a^f yQ^^33 139ivni 'aiiji-alaivp ^4 ojt i
' (t t) x ^tld IMII-ilN^d 1j> \ 1 ! ', 1 6 0 ; |

"k M'ki ' pi|3VVIa ^ ! ! I ! so ! !
j | • TpiMtci - lr i(I^d iTP zo j

•C.J*^I)X .3p/nxpp:i 'QMJiS-i^ijad T ^ 90
-rilHQ 33br S0|«OT>3 3| l3QJvn ' 3 1 1 ^ - i t l f i i |QJ=J so

•no^^p5 | a ™ ' fo
'^VOX^MJQ l ^ a EO

! j * 20
I I ^ 1 0

f f Ofr 9£ 2£ 82 t-3 02 91 21 8 I 9 » £ 1
. , , , u u v , I o 0»»*> '»«'

«*4t>4S I O C J O J ' .B .^dWyX3 91 V 8 a3U»nbac

9S0£H(M SI N0IID3S

PDR3056 DATA DIVISION

Sequence
(MM)
1 3
1

1 1

1 1
1

M

;

I
i

i 1
j 1

1
| .

I
i 1

t

1 j

i

I

lacuMO .
4 6

ofi
0J2
013

o|_4

0j5
0J6
017'

0 8 1

o 9'

lloi
lilt
l :2j

l |3|

IU1

1 5

V6

H7i

1,8|
1|9!

2!0|

l 1
1 i
1 • 1 1
. 1

1 i

1 A IB C O B O L S t a t e m e n t Pcrcr-)
J \ ^\ w » * ^
7 8 |I2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

1 ! kill i
in 1

h i l l
1 i | ! I j

^ 1 M
i l i I !

i i | - I i
M l I I I

I ! !
I i | , I

I I I

! i I ' l l
i j l l i

' I I j I ! I
' ' ! : ! I
i i . i ! i i
i , i 11 i i

i i | ! i j
' ' p\ i

i i i j i • :

| , ! ! ! ' i
* I , J I , I

M i l l !

I , I I • j ! I I
i i i i

i ! '
i ; i !

?ifkf
(pi
7| | '

I

vJSl-K
^ !

wi pzi
A i
<fh\
<*?! '
fa I

fe1 !

to!

<(w !
i l l
M\l
toj
r 1

fill
rti
ml 1 t] 1 1
pi'
qf»2i
ctiii •

O;*IM-
P'€J*jf
¥!FK-

1
e;c]ae
Jsl-JL
f 'rui
v^a-lF
FI\A
VlSHA
PHliu
Ms!-ie
f l l L ' L

vJS-fpl
Jsl-b.
J*!-!?
f *U
F I T J L

m l
H'n | FI|L!L
Hill
tfdijl
W3l '
FILL

doluM
ckk-
Q'A
flrcrr
fii.l i
rtisjr;-
ee !

torr
Ejci'
bjblek
H|K! 1
I ITY1

CI?1 :
vta*JE
TferTE
IflTU
1

Pf?

|

• i 1

eJK! '
1 i

eft
1 1

&l !

•riu.! !
C1 ja b !K! Ti
«jeî iEFJTKiE
uleie v , 0

1 i |

KJA4E I
1 1 •• I

-Wflngf
1 1 1

Sti 1 1 I
1 1

1 1 1

; I i i
1,

-Mid
1 1] 1 ,

fci | i
r 1

| . i I 1
1 ! ! pl ich

: Pic i
i 1 I ttrjerc
' i P l̂chr
1 ' PT^CT

! Wei
i 1 Qibi
i i 1 prrh

1 I I
vpc inni.
«J :pCRF'c*M-
CJCLURS' 3 n r

1 1 1 1
TO Yir
PXC X).
PTfc. XlC
P I C XY

i 1 i PX'CJ * r
! I PTC! K.
1 I PlE'Cl ^C

1 P1IC! XIX
1 ' ! tilci ^

I PTC1, xjx
1 1 1 /

1 1 I prcj x!C Ml Hi I
dee Y

 : 1 \M
xf sh ' A
bieie xi^^i^ \/
yep ^ ra ' ^ i
uifjd x to ' i
vine vj^ol
inre xi(SO I
unfl x;m :

i | |
! ! !

c'o.i^r
M«j.! i

30L:
I ' !

I^IJ 1 1 1
X|. ! 1
2lS%: 1

M i l l
H V M ! 1
X. M ' M l
5^,11 | |
• I M |
fcft .1 ' ! j 1

IJUEJ JSJPAIP'FJ.
due iwoAJf
AlLUie I I d !x»
N/ALUIFJ rs j J

\/ftuu'e;i x|sl V

^pume is!
NJAIIU'E P3
MALU^ X ^

|
1 |
| 1

I i i ;
M 1 M
! ! ; 1 '

| 1

1 1 j !
; I i 1
l i 1

1 : I : I
1 I 1 !

1 1 1
' 1

11 i j !
It l i ' :
11 11;
[j i 1 '
111

-A\ i hi
jAiH'c; ' .!

.piftdd-J 1 1
SOFFIT".
SIPIAICGTJ 1
v|C]TrtY!'i.!
slWflce.,.].

1
j

|

1
1

1

1 i i

1 i
I l

!
I
M

1

! i 1
\ ; |

1 ' 1

I i

i 1
1 1 '

I 1
I | j

! i j ! 1 . . . 1 i..

1 I

1
i
I i 1

1 I !
1 : I I

1 1
1 1 !

1 1 \ 1
I ' l l
1 i ! I
1 1 ! i
i l l !
! , l
i l M
1 !

| ! i !

1 M '
1 : '
I ' l

1 1 -
1 1 1 j

1
_l i . i L

15 - 51 November 1977

r

N U C L E U S

REFERENCE

Sections 13, 14, 15, and 16, which follow, concern themselves with
the four divisions of a COBOL program: The Identification Division,
The Environment Division, The Data Division, The Procedure Division,
respectively.

At the completion of each section, source coding for the corresponding
division of a sample program, REF2, is presented as an example. At
the close of Section 16, PROCEDURE DIVISION, the reader will find a
print-out of the 64V .mode Listing File for the entire REF2 program.

PDR3056 PROCEDURE DIVISION

SECTION 16

PROCEDURE DIVISION

PROCEDURE DIVISION

FUNCTION:

The Procedure Division contains instructions specifying the data pro
cessing steps to be performed by the program. COBOL instructions are
written as sentences which are combined to form paragraphs under para
graph names. These, in turn, are combined to form sections under
section names.

Within COBOL sentences, verbs (commands), are employed to denote actions
Statements and sentences denote procedures.

FORMAT:

PROCEDURE DIVISION [USING data-name-1 [data-name-2]...]

[DECLARATIVES.

{section-name SECTION. USE sentence.

[paragraph-name . [sentence] ...] — }...

END DECLARATIVES.]

[section-name SECTION.]

{paragraph-name . [sentence] ... }...

SYNTAX RULES:

1. The first entry in the Procedure Division must be the words
PROCEDURE DIVISION.

2. The USING clause is specified only if:

A. The program being written is a CALLable subprogram which is
to function under the control of a CALL statement.

B. The CALL statement in the calling program contains a USING
clause.

3. Each of the data-name operands in the USING clause must be
defined as a data item in the Linkage Section of the subprogram.

16 - 1 November 1977

SECTION 16 PDR3056

4. Within the subprogram, Linkage Section data items are processed
according to their data descriptions as given in the subprogram.

5. Data-name level-numbers in the USING clause must be 01 or 77.
See Section 18, INTER-PROGRAM COMMUNICATION for complete discussion.

6. Declarative sections are optional. When included, they must be
grouped at the beginning of the Procedure Division, preceded by the
key word declaratives and followed by the key words END DECLARATIVES.
These entries must appear on separate lines.

7. A SECTION entry is optional. When included, it must consist of
section-name, followed by the word SECTION and a period. Each
section header must appear on a line by itself; each section-name
must be unique.

8. A paragraph is a logical entity consisting of one or more
sentences. A paragraph-name must precede the first sentence.

9. A sentence is a single statement or a series of statements
terminated by a period and followed by a space.

10. A statement consists of a COBOL verb followed by appropriate
operands (data-names or literals) and other words necessary for the
completion of the statement. There are two types of statements,
the Imperative and Conditional:

A. Imperative Statements

An imperative statement specifies an unconditional action
to be taken by the object program. An imperative statement
consists of a verb and its operands, excluding the IF condi
tional statement, the READ statement and any I/O statement
which has an INVALID KEY clause.

B. Conditional Statements

A conditional statement stipulates a condition which is
tested to determine whether an alternate path of program
flow is to be taken. The IF statement provides this
capability. READ statements, and any I/O statement having
an INVALID KEY clause are also considered to be conditional.
When an arithmetic statement possesses a SIZE ERROR suffix,
the statement is considered to be conditional rather than
imperative.

Arithmetic statements may be imperative or conditional. The five
arithmetic verbs are: ADD, SUBTRACT, MULTIPLY, DIVIDE, COMPUTE.

REV. 0 16

PDR3056 PROCEDURE DIVISION

GENERAL RULES:

1. The sections under the DECLARATIVES header provide a method for
including procedures which are invoked when a condition occurs which
cannot normally be tested by the programmer. Each Declaratives Sec
tion comprises a section header, a USE compiler-directing sentence,
and, optionally, one or more paragraphs.

Although the system automatically handles checking and creation of
standard labels, and executed error recovery in the case of input/
output errors, additional procedures may be specified, here, by
the COBOL programmer.

Since such procedures are executed only at the time an error in
reading and writing occurs, they cannot appear in the regular
sequence of procedural statements. Instead, they must appear in
the DECLARATIVES section. Related procedures are preceded by a USE
sentence.

Within a USE procedure, there must be no reference to non-declara
tive procedures. Conversely, in the non-declarative portion, there
must be no reference to procedure-names which appear in the declara
tive portion, except that PERFORM statements may refer to the pro
cedures associated with a USE statement. For additional informa
tion, see USE statement.

2. After END DECLARATIVES is specified, no text can appear before
the next section header.

3. The Procedure Division is usually, though not necessarily,
written in sections, each with a section header followed optionally
by one or more successive paragraphs.

4. Section-name and paragraph-name follow the general rules for
WORD FORMATION.

5. Arithmetic statements in the Procedure Division are governed
by the following rules:

A. All data-names used in arithmetic statements must be ele
mentary numeric data items which are defined in the Data
Division of the program, except when they are the operands
of GIVING. The data item may be numeric edited. Index-
names and index items are not permissable in these arith
metic statements.

B. Decimal point alignment is supplied automatically through
out the computations.

C. Intermediate result fields generated for the evaluation of
arithmetic expressions assure the accuracy of the result
field, except where high-order truncation is necessary.

16 - 3 November 1977

SECTION 16 PDR3056

D. The maximum size of each operand is eighteen (18) decimal
digits. The composite of operands, which is a hypothe
tical data item resulting from the super imposition of
specified operands in a statement aligned on their decimal
points, must not contain more than eighteen decimal digits.

E. When arithmetic is attempted with one or more non-numeric
operands in VMODE, the program will execute, but results
are invalid. In RMODE, the program will terminate with
an error message "NON-NUMERIC DATA".

NOTE: With UII (Unimplemented Instruction Package) on Prime
400 and Prime 500 units, SPACES is interpreted as zeros when
utilized in arithmetic statements.

6. The three statement components which may appear in all arith
metic statements are: The GIVING option, the ROUNDED option, the
SIZE ERROR option.

A. If the GIVING option is written, the value of the data-
name which follows the word GIVING is made equal to the
calculated result of the arithmetic operation. The data-
name which follows GIVING is not used in the computation
and may be a report item.

B. When the ROUNDED option is specified, if the most signi
ficant digit of the excess is greater than or equal to 5,
the least significant digit of the resultant data-name
has its value increased by 1. If the ROUNDED option is
not taken, truncation will occur after decimal-point
alignment if the result is greater than the size of the
receiving data item.

Rounding of a computed negative result is performed by
rounding the absolute value of the computed result and then
making the final result negative.

The following chart illustrates the relationship between
a calculated result and the value stored in an item which
is to receive the calculated result, with and without
rounding.

REV. 0 16

PDR3056 PROCEDURE DIVISION

Calculated
Result

-12.36
8.432
35.6
65.6
.0055

Item to Receive Calculated Result

PICTURE

S99V9
9V9
99V9
S99V
SV999

Value After
Rounding

-12.4
8.4
35.6
66
.006

Value After
Truncating

-12.3
8.4
35.6
65
.005

Figure 16-1. Rounding Results

r

C. The SIZE ERROR option is written immediately after any
arithmetic statement, as an extension of the statement.
The format of the SIZE ERROR option is:

[ON SIZE ERROR imperative statement ...]

If, after decimal-point alignment and any low-order trunca
tion, the value of a calculated result exceeds the largest
value which the receiving field is capable of holding, a
size error condition exists.

If the SIZE ERROR option is present, and a size error condi
tion arises, the value of the resultant data-name is un
altered and the series of imperative statements specified
for the condition is executed.

If the SIZE ERROR option has not been specified and a size
error condition arises, no assumption should be made about
the final result.

An arithmetic statement, if written with a SIZE ERROR
option, is not an imperative statement. Rather, it is a
conditional statement since it is data-dependent and is
prohibited in contexts where only imperative statements
are allowed.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it is ap
parent that RECORD-COUNT HAS Picture 99, and cannot hold
a value of 100), both the MOVE and DISPLAY statements are
executed. Otherwise, the MOVE and DISPLAY statements are
not executed.

16 November 1977

SECTION 16 PDR3056

PROCEDURE STATEMENTS

COBOL statements (verbs) are described on the following pages alpha
betically as presented in the index below. This index is designed
as a quick reference to assist the user in locating format descriptions
and in determining verb category and special applications.

PRIME COBOL VERBS

VERB

ACCEPT
ADD
ALTER
CALL
CLOSE
COMPUTE
COPY
DELETE
DISPLAY
DIVIDE
ENTER
EXHIBIT
EXIT
EXIT PROGRAM
GO TO

IFa
INSPECT
MOVE
MULTIPLY
OPEN
PERFORM
READ
READY TRACE
RESET TRACE
REWRITE
SEARCH
SET
START
STOP
STRING
SUBTRACT
UNSTRING
USE
WRITE

IF is a verb

CATEGORY
(Depending on Format)

I/O
Arithmetic or Conditional
Procedure Branch
Procedure Branch
I/O
Arithmetic or Conditional
Compiler Directing
I/O or Conditional
I/O
Arithmetic or Conditional
Compiler Directing
I/O
Procedure Branch
Procedure Branch
Procedure Branch
Conditional or Arithmetic
Data Movement
Data Movement
Arithmetic or Conditional
I/O
Procedure Branch
I/O or Conditional
TRACE MODE Directing
TRACE MODE Directing
I/O or Conditional
Table Handling
Table Handling
I/O or Conditional
I/O or Ending
Data Movement
Arithmetic or Conditional
Data Movement
I/O Conditional
I/O or Conditional

Special
Application

Interprogram Communication
File Handling

Interprogram Communication
File Handling

Interprogram Communication
Debugging

Interprogram Communication

File Handling

File Handling
Debugging
Debugging
File Handling

File Handling

File Handling
File Handling

in COBOL, although not a verb in the grammatical sense

PAGE

16-7
16-9
16-11
16-12
16-14
16-16
16-17
16-19
16-20
16-21
16-23
16-24
16-25
16-26
16-27
16-28
16-32
16-34
16-36
16-37
16-39
16-42
16-44
16-45
16-46
16-48
16-52
16-54
16-56
16-57
16-60
16-62
16-67
16-69

in English.

Table 16-1. Prime COBOL Verb Index

REV. 0
16

PDR3056 PROCEDURE DIVISION

A C C E P T

FUNCTION:

The ACCEPT statement causes low-volume data to be made available to the
specified data item.

FORMAT 1:

ACCEPT data-name [FROM mnemonic-name]

FORMAT 2:

ACCEPT data-name FRCM I ̂ —• 1

TIME J
SYNTAX RULE:

The mnemonic-name in Format 1 must be specified also in the SPECIAL-
NAMES paragraph of the Environment Division, and must be associated
with the console (terminal).

GENERAL RULES:

1. The ACCEPT statement causes transfer of data from the hardware
device. The transferred data replaces the contents of the field spe
cified by data-name.

2. One line is read, and as many characters as necessary (depending
on the size of the named data field) are moved, without change, to the
indicated field. The maximum number of characters which can be read
is 72.

3. emission of FRCM mnemonic-name implies that input is from the
terminal.

4. When FRCM mnemonic-name is specified, input is keyed-in at the
terminal by the operator; mnemonic-name must be assigned to CONSOLE
in the special-names paragraph.

When input is to be accepted from the terminal, execution consists of
the following steps:

A. Execution is suspended.

B. When the operator enters a response, the program stores the
acquired data in the field designated by data-name, and normal
execution proceeds.

1 6 - 7 November 1977

SECTION 16 PDR3056

C. The data size is controlled by the size specified for data-
name.

D. For unequal sizes of data-name and terminal input the result
is treated as an alphanumeric to alphanumeric move with space
fill on the right or right truncation.

5. The Format 2 ACCEPT statement causes the requested information to
be transferred to the data item specified by data-name according to
the rules of the MOVE statement. DATE, DAY, and TIME are conceptual
data items and are therefore not described in the COBOL program.

6. DATE has the following data elements: Year, month, and day of the
month, in that sequence, from high to low order (left to right).
July 1, 1974 is expressed as 740701. DATE, when accessed by a COBOL
program, is treated as though described in the COBOL program as an un
signed elementary numeric integer data item six digits long.

7. DAY has the following data elements: Year, and day of year, in
that sequence, from high to low order (left to right). July 1, 1974
would be expressed as 74183. DAY, when accessed by a COBOL program,
is treated as though described in a COBOL program as an unsigned ele
mentary numeric integer data item five digits long.

8. TIME has the following data elements: Hours, minutes, and seconds.
TME is based on time elapsed after midnight on a 24-hour basis; thus,
2:41 p.m., or 1441 hours, is expressed as 144100. TIME, when accessed
by a COBOL program, is treated as though described in a COBOL program
as an unsigned elementary numeric integer data item six digits long.
The minimum value of TIME is 000000; maximum value is 235959.

REV. 0 1 6

PDR3056 PROCEDURE DIVISION

ADD
FUNCTION:

The ADD statement adds together two or more numeric values and stores the
resulting sum.

FORMAT 1:

ADD (data-name-il
literal-1 j 'literal™!?"2 * * ' — d a t a" n a m e- n [ROUNDED]

[; ON SIZE ERROR imperative-statement]

FORMAT 2

ADD {data-name-ll f,data-name-21 ,data-name-3
literal-1 J \>,litera,l-2 J ,literal-3 J ' ' *

GIVING data-name-m [ROUNDED] [; ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. In Formats 1 and 2, each data-name must refer to an elementary
numeric item, except that in Format 2 each item following GIVING can
be either an elementary numeric item or an elementary numeric edited
item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. If all
operands, excluding those following the word GTVING, were to be super
imposed upon each other, aligned by their implied decimal points, their
composite should not exceed 18 decimal digits in length.

GENERAL RULES:

1. In Format 1, the values of the operands preceding the word TO are
added, the sum is added to the current value of data-name-m and the
result is stored immediately in data-name-m.

2. In Format 2, the values of the operands preceding the word GIVING
are added, and the sum is stored as the new value of data-name-m fol
lowing GIVING.

3. See the rules for arithmetic statements under Procedure Division,
General Rules. The ROUNDED and ON SIZE ERROR options may be used when
truncation of the results could occur.

16 - 9 November 1977

SECTION 16 PDR3056

4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS
OF COBOL, Algebraic Signs.

EXAMPLES:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the total sum of INTEREST, DEPOSIT,
and BALANCE being placed at BALANCE, while the second would result in
the sum of REGULAR-TIME and OVERTIME earnings being placed in item
GROSS-PAY.

REV. 0 1 6 - 1 0

PDR3056 PROCEDURE DIVISION

A L T E R

FUNCTION:

The ALTER statement modifies a simple GO TO statement elsewhere in the
Procedure Division, thus changing the sequence of execution of program
statements.

FORMAT:

ALTER paragraph-name-1 TO [PROCEED TO] paragraph-name-2

SYNTAX RULES:

1. Paragraph-name-1 contains a single GO TO sentence without the
DEPENDING phrase.

2. Paragraph-name-2 is the name of another paragraph or section in
the Procedure Division.

GENERAL RULE:;

Execution of the ALTER statement modifies the GO TO statement in
paragraph-name-1 so that subsequent executions of the modified GO TO
statements cause transfer of control to paragraph-name-2.

EXAMPLE:

GATE.
GO TO MF-OPEN.

M-F-OPEN.
OPEN INPUT MASTER-FILE.
ALTER GATE TO PROCEDE TO NORMAL.

NORMAL.
READ MASTER-FILE, AT END GO TO EOF-MASTER.

Examination of the above code reveals the technique for providing
for a one-time initializing program step.

NOTE: ALTER is fully supported in this COBOL. Its use, however, is
inconsistent with structured programming techniques. The reader
should be aware that the ALTER statement presents difficulties in
the debugging process.

16 _ n November 1977

SECTION 16 PDR3056

C A L L

FUNCTION:

The CALL statement allows one program to communicate with one or more other
programs. It causes control to be transferred from one loaded program to
another within a run unit, with both programs having access to data items
referred to in the CALL statement.

FORMAT:

CALL literal-1 [USING data-name-1 [, data-name-2] . . .

SYNTAX RULES:

USING data-name-1 [, data-name-2] . . . I

1. The CALL statement appears in the calling program. The called
program, which must be known at compile time, is specified by name as
literal-1. The program represented by literal-1 may have been written
in a source language other than COBOL.

2. Literal-1 must be a non-numeric literal.

3. The USING phrase is included in the CALL statement only if there is
a USING phrase in the Procedure Division header of the called program.
Corresponding USING phrases in the calling and the called programs must
have the same number of operands.

4. Each operand in the USING phrase must have been defined as a data
item in the File Section, Working-Storage Section, or Linkage Section
and must have a level-number of 01 or 77. Data-name-1, data-name-
2, ..., may be qualified when they refer to data items defined in the
File Section.

GENERAL RULES:

1. The execution of a CALL statement transfers control to the called
program.

2. A program is in its initial state the first time it is called within
a run unit. On all other entries into the called program, the state of
the program remains the same as when control last past from its EXIT
statement back to the calling program. This includes all data fields,
the status and positioning of all files, and all alterable switch
settings.

3. Called programs can contain CALL statements. However, a called pro
gram must not contain a CALL statement that directly or indirectly calls
the calling program.

REV. 0 1 6 - 1 2

PDR3056 PROCEDURE DIVISION

4. The data-names specified by the USING phrase of the CALL state
ment indicate those data items available to a calling program, that
may be referred to in the called program. The order in which the
data-names appear in the USING phrases of the two programs is
critical; the data-names in the USING phrase of the CALL statement in
the calling program are interpreted as corresponding on a one-to-one
basis with those in the USING phrase in the Procedure Division header
of the called program. Corresponding data-names refer to a single set
of data which is available to the called and calling programs. Cor
respondence is positional, not by name. There is no such correspondence
for index-names, however, since index-names in the calling and called
programs always refer to separate indexes.

5. See Section 17, Interprogram Communication for additional infor
mation and examples.

16 - 13 November 1977

SECTION 16 PDR3056

C L O S E

FUNCTION:

The CLOSE statement terminates the processing of files, reels/units, with
optional rewind and/or lock or removal where applicable.

FORMAT 1:

CLOSE f i l e -name-1 /REEL\ [with NO REWIND"!
IjJNITj [FOR REMOVAL J * * *

FORMAT 2:

CLOSE file-name-1 | WITH LOCK.

FORMAT 3:

WITH LOCK...

CLOSE index-file-name

SYNTAX RULES:

1. The REEL or UNIT phrase must be used only for sequential files.

2. The files referenced in the CLOSE statement need not all have the
same access or organization.

3. Except where specifically stated, the terms UNIT and REEL are
synonomous and interchangeable.

GENERAL RULES:

1. Format 3 is the only option possible for both Indexed and Relative
files.

2. A CLOSE statement must be executed upon completion of file processing,
or before a STOP RUN is executed.

3. Files are divided into the following categories to show the effect
of various types of CLOSE statements as applied to various storage media:

A. Nonreel/unit - A file on an input or output medium (a printer,
a disk).

B. Sequential single-reel/unit - A file wholly contained on one
reel/unit.

REV. 0 1 6 - 1 4

PDR3056 PROCEDURE DIVISION

C. Sequential multireel/unit - A sequential file which is contained
on more than one reel/unit.

D. Nonsequential single/multireel/unit - A relative or indexed file,
residing on a disk device, which may be a single or multiunit
file.

4. For this compiler, CLOSE statement options are treated as comments.

15 _ 15 November 1977

SECTION 16 PDR3056

C O M P U T E

FUNCTION:

The COMPUTE statement evaluates an arithmetic expression and then stores
the result in a designated numeric or report item.

FORMAT:

data-name-2
COMPUTE data-name-1 [ROUNDED] = < numeric-literal

arithmetic-expression
([SIZE-ERROR-clause]

0

SYNTAX RULE:

In general, data-names appearing to the left of = must refer to either
an elementary numeric item or an elementary numeric edited item.

GENERAL RULE:

The COMPUTE statement is governed by the regulations imposed by the
statement components GIVING, ROUNDED, SIZE ERROR, as outlined in the
General Rules, PROCEDURE DIVISION. It is also governed by the general
regulations for Arithmetic Statements and LANGUAGE SPECIFICATIONS.

REV. 0 16 _ i6

PDR3056 PROCEDURE DIVISION

C O P Y

FUNCTION:

The COPY statement provides a means of including pre-written COBOL
source coding in the programs at compile time.

FORMAT:

COPY text-name [(§£) library-name]

SYNTAX RULES:

1. OF and IN are interchangeable and mutually exclusive.

2. A COPY statement may occur anywhere in the source program, in
any Division where a character-string or a separator might usually
occur, except that it may not occur within another COPY statement.

GENERAL RULES:

1. Text-name must be a unique name on the UFD (User's File
Directory) which contains the COBOL program if the library-name
is not specified.

2. If the text name is not on the same UFD as the program,
library-name must be specified and must be the UFD name which
contains the text-name.

EXAMPLES:

A. FILE-CONTROL. COPY text-name.

B. FD MASTER-FILE COPY text-name OF SUB.

C. 01 MASTER-RECORD. COPY text-name IN SUB.

D. SECTION-NAME SECTION. COPY text-name.

E. PARAGRAPH-NAME. COPY text-name IN SUB.

Of the examples above, A and D have copy members contained on the
same UFD as the source program. B, C, and D have copy members not
contained in the source program UFD; these have copy members con
tained in a UFD named SUB.

3. The data preceding the COPY statement must not be contained
within the copy member.

1 6 - 1 7 November 1977

SECTION 16 PDR3056

EXAMPLE:

The following is from Data Division coding in a source program.

01 MASTER-DESCRIPTION. COPY MASDES.

The text-name MASDES exists in the same UFD as the source program.
It must not contain the 01 MASTER-DESCRIPTION entry; it might
have the format:

02 BADGE-NO PIC 9(5).
02 NAME.

03 LAST-NAME PIC X(15).
03 FIRST-NAME PIC X(15).

After compilation, examination of the listing file would reveal:

01 MASTER-DESCRIPTION. (COPY MASDES.) (where the copy member is
02 BADGE-NO PIC 9(5). comment only.)
02 NAME.

03 LAST-NAME PIC X(15).
03 FIRST-NAME PIC X(15).

REV. 0 1 6 - 1 8

PDR3056 PROCEDURE DIVISION

D E L E T E

FUNCTION:

The DELETE statement logically removes a record from a disk file.

FORMAT:

DELETE file-name [INVALID KEY imperative-statement]

SYNTAX RULE:

The INVALID KEY option must not be specified for a DELETE state-
ment referencing a file in SEQUENTIAL access mode.

GENERAL RULES:

1. A DELETE statement logically removes a data record from a file.
When operating on an indexed file, the DELETE statement removes
all corresponding indices as well.

2. Execution of a DELETE statement does not affect the contents
of a record area associated with file-name.

3. In SEQUENTIAL access, the record to be deleted must have been
successfully read before a DELETE can be executed.

4. In indexed files with RANDOM or DYNAMIC access modes, the value
of the record to be deleted must be placed in the RECORD KEY field.

5. In relative files with RANDOM or DYNAMIC access modes, the value
of the record to be deleted must be placed in the RELATIVE KEY
field.

6. For additional discussion, see Sections 19 and 20.

16 - 19 November 1977

SECTION 16 PDR3056

D I S P L A Y

FUNCTION:

The DISPLAY statement causes low-volume data to be output to the appro
priate hardware device.

FORMAT:

{data-name
literal
figurative-constant

.. [UPON mnemonic-name]

SYNTAX RULES:

1. Mnemonic-name must be specified in the SPECIAL-NAMES paragraph
in the Environment Division.

2. The maximum total number of characters which may be output is 72.

GENERAL RULES:

1. When the UPON suffix is omitted, the system default is the
standard display device, the on-line terminal.

2. If a figurative-constant is given as an operand, it will be
displayed as a single character.

3. If a data item operand is packed, it is displayed as a series
of digits followed by a separate trailing sign.

EXAMPLES:

Type

data-name

data-name
literal

Statement

DISPLAY BADGE-NO

DISPLAY 'BADGE-NO = 'BADGE-NO

Output

52207

BADGE-N = 52207

literal DISPLAY 'END-JOB' ENDJOB

literal
figurative-constant DISPLAY 'SELECT' ZERO SELECT0

REV. 0 16 20

PDR3056 PROCEDURE DIVISION

D I V I D E

FUNCTION:

The DIVIDE statement divides one numeric data item into another and
stores the quotient.

FORMAT 1:

Jd
DIVIDE ^ t e r a r T " ^ M 9 _ data-name-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

FORMAT 2

DIVIDE I data-name-1
literal-1

[; ON SIZE ERROR imperative-statement]

} BY ^literal"?"2^ [ROUNDED]

FORMAT 3:

DIVIDE
data-name-1
literal-1

INTO
data-name-2
literal-2

GIVING data-name-3 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. Each data-name must refer to an elementary numeric item, except that
a data-name associated with the GIVING phrase can refer either to an ele
mentary numeric item or to an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. If all rec-
ceiving data items were to be superimposed upon each other, aligned by
their decimal points, their composite should not exceed 18 decimal digits
in length.

4. Division by zero always causes a size-error condition.

16 21 November 1977

SECTION 16 PDR3056

GENERAL RULES:

1. In FORMAT 1, data-name-1 or literal-1 is divided into data-
name-2; the quotient then replaces the divident (data-name-2).

2. In FORMAT 2, data-name-1 or literal-1 is divided by data-
name- 2 or literal-2. The quotient replaces the first operand,
data-name-1.

3. In FORMAT 3, division occurs as in A or B below, and the
quotient is stored in the data items following the word GIVING.

A. If the keyword INTO is used, the value of data-name-1 or
literal-1 is divided into data-name-2 or literal-2 and
the result is stored in data-name-3.

B. If the keyword BY is used, data-name-1 or literal-1 is
divided by data-name-2 or literal-2 and the result is
stored in data-name-3.

4. The REMAINDER clause of DIVIDE statement is not supported.
The user may substitute by a simple modification:

For the statement:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3 REMAINDER data-name-4

Substitute:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3
COMPUTE data-name-4 = data-name-1 MINUS
(data-name-2 TIMES data-name-3).

REV. 0 1 6 - 2 2

PDR3056 PROCEDURE DIVISION

E N T E R

FUNCTION:

The ENTER statement is classified as a compiler-directing statement; it
acts as a modifier to a subsequent CALL statement and permits the use of
more than one language in the same program.

FORMAT:

COBOL
ENTER

SYNTAX RULES:

ASSEMBLER

1. A CALLed subprogram may be written in COBOL, FORTRAN, or Assembly
Language. The parameter ASSEMBLER in the ENTER statement signifies a
subprogram is other than COBOL.

2. The form ENTER COBOL may be used following a CALL statement; this
traditional usage is optional. After any CALL statement, ENTER COBOL
is assumed.

3. Each CALL upon an Assembler Language subroutine must be preceded
by its own ENTER ASSEMBLER statement.

GENERAL RULES:

1. The other language statements are executed in the object program
as if they had been compiled in the object program following the ENTER
statement. See INTER-PROGRAM COMMUNI CATION for additional information.

2. The ENTER statement is optional in this compiler.

16 - 23 November 1977

SECTION 16 PDR3056

E X H I B I T

FUNCTION:

The EXHIBIT statement provides a means for receiving critical data at specified
points in a procedure.

FORMAT:

PYHTRTT / J- iT.era±
C A m m i 1 NAMED data-name

GENERAL RULES:

1. The EXHIBIT statement is injected at critical points in the Procedure
Division to provide check-pointing information. Specified data is
EXHIBITED on the terminal.

2. The EXHIBIT statement differs from DISPLAY in that data-name is printed
as well as its value and an = character.

EXAMPLE:

Statement OUTPUT

EXHIBIT NAMED EMPLOYEE-NO EMPLOYEE-NO = 950

REV. 0 1 6 - 2 4

PDR3056 PROCEDURE DIVISION

E X I T

FUNCTION:

The EXIT statement provides an end-point for a procedure.

FORMAT:

EXIT

SYNTAX RULES:

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

GENERAL RULES:

1. An EXIT statement serves only to enable the user to assign a
procedure-name to a given point in a program. Such an EXIT state
ment has no other effect on the compilation or execution of the
program.

16 - 25 November 1977

SECTION 16 PDR3056

EX I T P R O G R A I i

FUNCTION:

The EXIT PROGRAM statement marks the logical end of a called program.

FORMAT:

EXIT PROGRAM.

SYNTAX RULES:

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the
paragraph.

GENERAL RULES:

1. An execution of an EXIT PROGRAM statement in a called program
causes control to be passed to the calling program. Execution of
an EXIT PROGRAM statement in a program which is not called behaves
as if the statement were an EXIT statement.

™ „ 1 6 - 2 6
REV. 0

PDR3056 PROCEDURE DIVISION

GO TO

FUNCTION:

The GO TO statement transfers control from one part of the PROCEDURE DIVISION
to another, overriding the normal sequential execution of sentences.

FORMAT 1:

GO TO procedure-name.

FORMAT 2:

GO TO procedure-name-1 [procedure-name-2]...

DEPENDING ON data-name.

SYNTAX RULES:

1. A paragraph referenced by an ALTER statement can consist only of a
paragraph header followed by a format 1 GO TO statement.

2. In Format 2, data-name must be an elementary, numeric integer.

GENERAL RULES:

1. A GO TO statement must not branch out of a range of the PERFORM
statements.

2. When a Format 1 GO TO statement is executed, control is transferred
to procedure-name, or to another paragraph-name if the GO TO statement
has been modified by an ALTER statement.

3. When a GO TO statement represented by Format 2 is executed, control
is transferred to procedure-name-1, procedure-name-2, etc., depending on
the value of the identifier being 1, 2, ..., n. If the value of the
identifier is anything other than the positive or unsigned integers 1,
2, ..., n, then no transfer occurs and control passes to the next state
ment in the normal sequence for execution.

4. In a Format 2 GO TO statement, there is no limitation to the total
number of characters permitted in procedure-names. The aggregate
number of acceptable characters is unlimited.

16 - 27 November 1977

SECTION 16 PDR3056

I F

FUNCTION:

The IF statement causes the evaluation of a condition, permitting the
execution of specified procedural statements if the condition is true.

FORMAT:

TC , . „ . /"NEXT SENTENCE"! r n T C t : / s ta tement (s)-2"\
IF condition | s t 5 t e m e n t (s) - l / [^ \NEXT SENTENCE J]

SYNTAX RULE:

The conditions in the IF statement must conform to the rules and
outlining of conditions specified in Conditional Expressions,
Section 12.

GENERAL RULES:

1. If the condition is true, any ELSE phrase is bypassed and either
statement-1 or the NEXT SENTENCE (whichever was specified in the
statement) is executed, as follows:

A. Statement-1, if specified, is executed. Control then
passes to the next executable sentence following the IF
statement, unless statement-1 contains a procedure-branch
or conditional statement, in which case control is trans
ferred according to the rules for that statement.

B. If the NEXT SENTENCE phrase is specified, control passes
to the next executable sentence.

2. If the condition is false, any statement-1 or its replacement
NEXT SENTENCE which may be specified is bypassed, and control passes
as follows:

A. Statement-2, if specified, is executed. Control then passes
to the next executable sentence, unless statement-2 contains
a procedure-branch or conditional statement, in which case
control is transferred according to the rules for that
statement.

B. If no ELSE statement-2 phrase is specified, or if the ELSE
NEXT SENTENCE phrase is specified, control passes to the
next executable sentence.

REV. 0
16 - 28

file:///NEXT

Relation

NOT
NOT
NOT

<
>

=
<
>

PDR3056 PROCEDURE DIVISION

3. The IF statement is said to be nested whenever statement-1 and/or
statement-2 contains another IF statement. IF statements within IF
statements are considered as paired IF and ELSE combinations, proceeding
from left to right. Thus, any ELSE encountered applies to the imme
diately preceding IF which has not been already paired with an ELSE.
It is not required that the number of ELSE's in a sentence be the same
as the number of IF's. See Appendix G for further information.

4. The relation condition has the format:

IF operand relation operand

The six relations in conditions are:

Meaning
is equal to
is less than
is greater than
is not equal to
is not less than
is not greater than

5. The class condition determining whether an operand is numeric or
alphabetic. Its format is:

IF data-name IS [NOT] fegggjnc]

The NUMERIC test is valid only for a group, decimal, or character item.
The ALPHABETIC test is valid only for a group or character item.

6. The condition-name condition tests the value or status of a condi
tional variable. Its format is:

IF [NOT] condition-name

The condition-name is defined as a level 88 data item in the Record
Description entry in the Data Division.

In a condition-name condition, the first series of statements is executed
if, and only if, the designated condition is true. The second series of
statements is executed if, and only if, the designated condition is false.
The second series (ELSE part) is terminated by a sentence-ending period.
If there is no ELSE part to an IF statement, then the first series of
statements must be terminated by a sentence-ending period.

Whether the condition is true or false, the next sentence is executed
after execution of the appropriate series of statements. If a GO TO
is contained in the imperatives which are executed, or the normal flow
of program steps is superseded because of an active PERFORM statement,
the next sentence is not executed.

16 - 29 November 1977

SECTION 16 PDR3056

EXAMPLES:

IF BALANCE = 0 GO TO NOT-FOUND.

IF X = 1.743 MOVE »M' TO FLAG.

IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 TO
SKIP-COUNT ELSE GO TO BYPASS.

7. The sign condition tests an arithmetic expression to determine
whether its value is greater than, less than, or equal to zero.
The format is:

[NEGATIVE!
IF data-name IS [NOT] < ZERO >

[POSITIVEJ

8. Two or more conditions can be combined by the logical operators
AND and OR. The format for a combined condition is:

IF condition < ̂ — > condition } -=r=— \ condition ...

9. Comparisons employing the IF statement can be made involving
indexed data items.

10. A "nested IF" exists when, in a single sentence, more than one
IF precedes the first ELSE.

EXAMPLE:

IF X = Y IF A = B

MOVE "*" TO SWITCH
ELSE MOVE "A" TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be represented by the tree
structure in Figure 16-2.

16 - 30
REV. 0

PDR3056 PROCEDURE DIVISION

Next
Sentence

Next
Sentence

Next
Sentence

Figure 16-2. Nested IF Tree Structure

Another useful way of viewing nested IF structures is based on
numbering IF and ELSE verbs to show their priority.

IF (ID X = Y

true
action(1):

IF(2) A = B
true-action(2): MOVE "A" TO SWITCH

ELSE(2) false-action(2): MOVE "A" TO SWITCH

ELSE(l) false-action(1): MOVE SPACE TO SWITCH.

The above illustration shows clearly the fact that IF(2) is wholly
nested within the true-action side of IF(1).

11. It is not required that the number of ELSEs in a sentence be
the same as the number of IFs; there may be fewer ELSE branches.

EXAMPLES:

IF M = 1 IF K = 0
GO TO MLK0 ELSE GO TO MN0T1.

IF AMOUNT IS NUMERIC IF AMOUNT
IS ZERO GO TO CLOSE-OUT.

In the latter case, IF(2) could equally well have been written
as AND.

16 31 November 1977

SECTION 16 PDR3056

I N S P E C T

FUNCTION:

The INSPECT statement enables the programmer to examine a character-string
item, to tally, replace, or tally and replace occurrences of single char
acters in a data item.

FORMAT:

INSPECT data-name-1 TALLYING data-name-2 FOR (J ALL I operand-2

[fBEFORE*\ INITIAL operand-3]
1AFTER J

ft
REPLACING ALL | operand-4

LEADING
FIRST

BY operand-5

CHARACTERS J
/"BEFORE^
RAFTER J

INITIAL operand-7]

SYNTAX RULE:

Data-name operands must be described (implicitly or explicitly) as
USAGE IS DISPLAY.

GENERAL RULES:

1. When both TALLYING and REPLACING clauses are present, the two clauses
behave as if two INSPECT statements were written. The first contains
only a TALLYING clause, the second containing only a REPLACING clause.

2. The INSPECT statement enables examination of a character-string item,
permitting various combinations of the following actions:

A. Counting appearances of a specified character;

B. Mapping a specified character into an alternative.

C. Qualifying and limiting the above actions by keying those actions
to the appearance of other specific characters.

REV. 0 1 6 - 3 2

PDR3056 PROCEDURE DIVISION

3. The TALLYING clause causes character-by-character comparison, from
left to right, of data-name-1. When an AFTER INITIAL operand-3 sub
clause is present, the counting process begins only after detection
of a character in data-name-1 matching operand-3. If BEFORE INITIAL
operand-3 is specified, the counting process terminates upon encounter
ing a character in data-name-1 which matches operand-3. The count is
placed in data-name-2.

4. The REPLACING clause causes replacement of characters under spe
cified conditions. If BEFORE INITIAL operand-7 is present, replace
ment does not continue after detection of a character in data-name-1
matching operand-7. If AFTER INITIAL operand-7 is present, replace
ment does not commence until detection of a character in data-name-1
matching operand-7.

16 - 33 November 1977

SECTION 16 PDR3056

M O V E

FUNCTION:

The MOVE statement transfers data from one area of main storage to another,
performing conversion and editing as indicated.

FORMAT:

MOVE s-,-t -, L } TO data-name-2 [data-name-n...].

SYNTAX RULE:

f 19.

Data-name-1 and literal represent the sending area; data-name-2,
data-name-n represent the receiving area.

GENERAL RULES:

1. When a group item is a receiving field, characters are moved without
conversion and without editing.

2. During elementary moves, data is converted as necessary, editing
occurs, and alignment is performed according to Standard Alignment Rules,
LANGUAGE SPECIFICATIONS.

3. For numeric (external or internal decimal, binary, numeric literal)
to numeric or report:

A. The items are aligned by decimal points, with generation of
zeros or truncation on either end, as required.

B. When the types of the source field and receiving field differ,
conversion to the type of the receiving field takes place.

C. The items may have special editing performed on them with sup
pression of zeros, insertion of a dollar sign, etc., and decimal
point alignment, as specified by the receiving area.

4. For non-numeric source and targets:

A. The characters are placed in the receiving area from left to
right (unless JUSTIFIED RIGHT applies).

B. If the receiving field is not completely filled by data being
moved, the remaining positions are filled with spaces.

REV. 0 16 - 34

PDR3056 PROCEDURE DIVISION

C. If the source field is longer than the receiving field, the
move is terminated as soon as the receiving field is filled.

5. When overlapping fields are involved, results are not predictable.

6. Table 16-2 summarizes the various types of moves permitted with
the MOVE statement.

RECEIVING

u
H
W

PQ

u
i—i

S
i — i

Q
W
u

ALPHABETIC X

BINARY X X (A)

ALPHANUMERIC
EDITED

X (C) X

NUMERIC X X X (B)

NUMERIC EDITED X (C) X (C)

ALPHANUMERIC X (D) X

NOTES:

(A) If receiving operand length L is less than or
equal to 18, target Picture 9(L) is assumed.
Otherwise, the MOVE is disallowed.

(B) The source is converted to DISPLAY form with
separate trailing sign (blank for positive),
then moved as a character string source subject
to truncation or blank padding depending on
receiving its length.

(C) The source is considered as a character string.

(D) If source length L is less than or equal to 18,
source Picture 9(L) is assumed. Otherwise, the
MOVE is disallowed.

Table 16-2. Permissible Moves

16 35 November 1977

SECTION 16 PDR3056

M U L T I P L Y

FUNCTION:

The MULTIPLY statement computes the product of two numeric data items.

FORMAT:

MULTIPLY <kta -name : l
numeric-literal-1

f L

I data-name-2 [GIVING data-name-3]

— jnumeric-literal-2 GIVING data-name-3 f

[ROUNDED [ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. Each data-name must refer to an elementary numeric item, except
that data-name-3 may be an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The
composite of operands, excluding those following GIVING, must not contain
more than 18 decimal digits.

GENERAL RULES:

1. If the GIVING option is omitted, the second operand must be a data-
name; the product will replace the second operand data-name.

EXAMPLE:

If the field BALANCE is to be multiplied by 1.03, it must be written
as:

MULTIPLY 1.03 BY BALANCE

Where the result will be stored in the data item named BALANCE.

2. When the GIVING option is taken, the product is stored in data-
name-3.

3. The rules for signs are those presented in FUNDAMENTAL CONCEPTS OF
COBOL, Algebraic Signs.

REV. 0 16 - 36

PDR3056 PROCEDURE DIVISION

O P E N

The OPEN statement initiates the processing of files, and enables other
input/output operations, such as label checking and writing.

FORMAT 1:

flNPl
< 1-0
INPUT

OPEN (1-0) filename ...
OUTPUT

FORMAT 2:

OPEN
flNPJ

< < 1-0
INPUT

OUTPUT M

» index-file-name-1

v.

SYNTAX RULES:

1. There must be an OPEN statement for each file prior to a READ,
WRITE, or REWRITE statement.

2. The files referred to in the OPEN statement need not all have the
same organization or access.

GENERAL RULES:

1. Format 1 is used for Sequential 1-0 (SAM files).

2. Format 2 is used for Indexed 1-0 and Relative 1-0.

3. A file opened as INPUT can only be accessed in a READ statement.

4. A file opened as OUTPUT can only be accessed in a WRITE statement.

5. A file opened as 1-0 can be accessed by a READ, REWRITE (disk only)
or WRITE statements.

6. If the OPEN statement does not produce access to the file (i.e.,
it cannot locate the desired file), the program will terminate
abnormally at execution time.

7. See Sections 19 and 20 for additional information on Indexed
1-0 and Relative I-O, respectively.

8. OPEN statements vs. Access Mode for Indexed and Relative files
are presented in Table 16-3 below.

16 - 37 November 1977

SECTION 16 PDR3056

FILE
ORGANIZATION

SEQUENTIAL
INDEXED
RELATIVE

INDEXED
RELATIVE

INDEXED
RELATIVE

ACCESS
MODE IS

SEQUENTIAL

RANDOM

DYNAMIC

Procedure
Statement

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

OPEN Option in Effect

Input

X

X

X

X

X

Output

X

X

X

1-0

X

X
X
X

X
X
X

X

X
X
X
X
X

Table 16-3. OPEN Statements and Access Modes

REV. 0 16 - 38

PDR3056 PROCEDURE DIVISION

P E R F O R M

FUNCTION:

The PERFORM statement is used to transfer control explicitly to one or
more procedures, and to return control implicitly to the normal sequence
after transfer execution.

FORMAT 1:

PERFORM procedure-name-1 [J THROUGH [procedure-name-2]
THRU

r
[1 integer

|data-name-l

TIMES]

FORMAT 2

PERFORM procedure-name-1 [J THROUGH [procedure-name-2]
THRU

[VARYING J data-name-2 [FROM
index-name-1

data-name-3
index-name-2

literal-1

BY

data-name-4^] [UNTIL condition-1]
literal-2

SYNTAX RULES:

1. The words THROUGH and THRU are equivalent.

2. Each data-name represents an elementary nuneric item described in
the Data Division.

3. Each literal represents a numeric literal.

4. In Format 2, if an index-name is specified in the VARYING or AFTER
phrase, then:

A. Data-name in the associated FROM and BY phrases must be an
integer data item.

16 39 November 1977

SECTION 16 PDR3056

B. The literal in the associated FROM phrase must be a positive
integer.

C. The literal in the associated BY phrase must be a non-zero
integer.

5. In Format 2, if an index-name is specified in the FROM phrase,
then:

A. Data-name in the associated VARYING or AFTER phrase must be an
integer data item.

B. The data-name in the associated BY phrase must be an integer
data item.

C. The literal in the associated BY phrase must be an integer.

6. In Format 2, literal in the BY phrase must not be zero.

7. In Format 2, condition-1... condition-n may be any conditional
expression as described in FUNDAMENTAL CONCEPTS OF COBOL, Conditional
Expressions.

GENERAL RULES:

1. If procedure-name -n is a paragraph-name, control is returned to the
next sequential instruction after the last sentence of that paragraph.

2. If procedure-name-n is a s ect ion-name, control is returned to the
next sequential instruction after the last sentence of the last paragraph
of that section.

3. If the PERFORM statement is written with no options, control is
transferred to procedure-name-1. At the completion of procedure-name-1,
control is implicitly returned to the next executable statement following
the PERFORM statement.

4. If the THROUGH option in Format 1 is taken, multiple paragraphs or
sections can be executed before control is returned to the next sequential
statement.

5. In Format 1, if the TIMES option is taken, procedures are performed
the number of times specified by data-name-1 or integer. At the comple
tion of procedure-name-2, control is returned to the statement following
PERFORM.

Data-name-1 or integer must be a positive numeric integer which cannot
be greater than 32,767.

REV. 0 " - 4°

PDR3056 PROCEDURE DIVISION

If data-name-1 or integer is initially zero or negative, the PERFORM
is not executed; control passes to the statement following PERFORM.

6. If the UNTIL option in Format 2 is taken, successive execution of
procedures occurs until a condition is satisfied.

The statement is coded as:

PERFORM procedure-name-1[THRU procedure-name-2] UNTIL condition-1.

Condition-1 must be a simple condition, excluding an ELSE or OTHERWISE
phrase.

The condition is tested prior to execution of the PERFORM statement.
If the condition is not met, PERFORM is executed until the condition
is satisfied. If the condition is satisfied prior to execution of the
PERFORM statement, PERFORM is not executed and control passes to the
next sequential instruction.

7. Format 2 with all options is used to vary the values referred to
by data-name-2 or index-name-1.

The condition is tested prior to execution of the PERFORM statement.
If the condition is true, PERFORM is not executed; control passes to
the next sequential instruction.

If the condition is false, data-name-2 is set to the current value of
data-name-3 or literal-1 at the point of initial execution of the
PERFORM statement. If the condition is still false, procedure-name-1
THRU procedure-name-2 are executed once.

The value of data-name-2 is incremented or decremented by the value in
data-name-4 or literal-2. The condition is reevaluated. The cycle
continues until the condition is satisfied, at which point control is
transferred to the next executable statement following PERFORM.

8. At the termination of a Format 2 PERFORM statement, data-name-2
or index-name-1 have a value which exceeds the last used setting by
the value of data-name-4 or literal-2. If the condition was true
before initial execution of PERFORM, data-name-2 or index-name-1
contain the current value of data-name-3 or index-name-2.

16 42 November 1977

SECTION 16 PDR3056

R E A D

FUNCTION:

The READ statement makes available a record from a file.

FORMAT 1:

READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative statement] .

FORMAT 2:

READ file-name [INTO data-name-1] [KEY IS data-name-2]

[INVALID KEY imperative-statement].

SYNTAX RULES:

1. Format 1 is used for all sequentially read files.

2. The NEXT phrase option in Format 1 is used only for Indexed and
Relative 1-0 files, in sequential or Dynamic access modes, when records
are to be retrieved sequentially.

3. Format 2 is used only for Indexed 1-0 and Relative 1-0 files.

4. The KEY IS option of Format 2 is used only for Indexed 1-0 files.

GENERAL RULES:

1. A file must be OPEN in the INPUT or 1-0 mode when a READ statement
for that file is executed.

2. The READ statement makes a record available to the program before
execution of any subsequent statement, provided AT END or INVALID KEY
are not invoked.

3. Format 1, without the NEXT option, is used for sequential 1-0 files.
The INPUT option permits the user to specify that a copy of the data
record is to be placed into a data area immediately after the read state
ment. The data-name must not be defined in the file itself.

REV. 0 16 " 42

PDR3056 PROCEDURE DIVISION

If end-of-file occurs, but there is no AT END clause in the READ
statement, an applicable Declarative procedure is performed. If
neither AT END nor Declarative exists, an execution 1-0 error
occurs.

4. Format 1, without the NEXT option, is used for sequential reads
of indexed 1-0 files in sequential access mode. The read is based
on the primary index (RECORD KEY).

5. Format 1, without the NEXT option, is used for sequential reads
of Relative 1-0 files in sequential access mode. The read is based
on the RELATIVE KEY.

6. Indexed and Relative 1-0 files in Dynamic mode, may be read
sequentially, rather than randomly, by use of the NEXT option.

7. For General Rules 4, 5, and 6 above, if the INTO clause is
used, the data record is automatically moved into data-name-1. When
AT END is specified, control is passed to the imperative-statement
which the complete file has been read.

8. For Indexed 1-0 files in Dynamic and Random mode, if NEXT is
not specified, and the file is to be read sequentially, the value
of the record to be retrieved must be placed in the RECORD KEY
data-name.

9. For Relative 1-0 files, if NEXT is not specified, and the file
is to be read sequentially, the value of the record to be retrieved
must be placed in the RELATIVE KEY data-name.

10. For Indexed 1-0 files read sequentially, if one of the secondary
index sequences is to be used, the index must first be established
with a Format 2 statement. Thereafter, a Format 1 statement may
be used.

11. NOTE: For sequential 1-0 disk files containing packed or binary
data, the user should specify UNCOMPRESSED in the FD entry for that
file.

12. Further detailed discussion of READ statement formats as they
apply to Indexed 1-0 files and Relative 1-0 files will be found in
Sections 19 and 20, respectively.

16 - 43 November 1977

SECTION 16 PDR3056

R E A D Y T R A C E

FUNCTION:

The READY TRACE statement turns on a Prime tracing function to assist in
determining the point at which actual flow departs from expected flow.

FORMAT:

READY TRACE

SYNTAX RULE:

The execution of the trace mode may be set or reset dynamically.

GENERAL RULES:

1. Each time a paragraph or section in the Procedure Division is
entered, that paragraph or section name is output to the terminal.

2. In 64R mode the format printed is:

Program name/subprogram name section -name/paragraph-name

3. In 64V mode, the format printed is:

ENTER: section-name/paragraph-name.

4. At Rev. 14, the output from the READY TRACE statement can be
directed to a separate file in addition to the user terminal output.
The system command COMOUT is used for this purpose. The command is
given just prior to program execution; its format is:

COMOUT ASSIGN TO file-name

where file-name is a programmer supplied word.

At program completion, the system command, COJOUT-E file-name, will
close the file.

All data resulting from READY TRACE will be output to file-name and
can be SPOOLed or SLISTed at program termination.

5. It is a good technique to TRACE only a limited number of records,
such that the output will not be too large to handle, thereby dimin
ishing its value for debugging purposes.

REV. 0 1 6 - 4 4

PDR3056 PROCEDURE DIVISION

f" RESET TRACE

FUNCTION:

This statement turns off the Prime tracing function.

FORMAT:

RESET TRACE

GENERAL RULE:

The RESET TRACE statement may be coded anywhere in the Procedure
Division when a READY TRACE statement has been previously coded.

16 - 45 November 1977

SECTION 16 PDR3056

R E W R I T E

FUNCTION:

The REWRITE statement logically replaces a record existing in a disk
file.

FORMAT:

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement]

SYNTAX RULES:

1. Record-name and data-name must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section
and may be qualified.

GENERAL RULES:

1. The file containing record-name must be a disk file and must be
open for 1-0 (in all access methods) prior to execution of a REWRITE
statement.

2. If the FROM option is used, the information in data-name is moved
to the record area prior to the REWRITE. For indexed 1-0 files, the
primary RECORD KEY must equal the key from the previous READ, or the
INVALID KEY conditions will occur.

3. A record must have been READ successfully prior to a REWRITE state
ment. This is required to lock the record to ensure that it cannot be
updated by another program running concurrently.

4. The INVALID KEY option is not used for sequential 1-0 files. The
file status field, if specified, is updated by the REWRITE statement.

5. For Indexed 1-0 files, control is passed to the INVALID KEY state
ment if the primary key is changed. If this option is not written,
control passes to the USE DECLARATIVE. One or the other of these options
must be taken for indexed files. Refer to Appendix E for status codes.

6. For Relative 1-0 files, control is passed to the INVALID KEY state
ment if the RELATIVE KEY is changed after a successful READ. If the
INVALID KEY option is not taken, control passes to the USE DECLARATIVE.
One or the other of these options must be taken.

REV. 0 1 6 - 4 6

PDR3056 PROCEDURE DIVISION

7. A sequential file using REWRITE must be a COBOL-created file
other than a printer file, or any uncompressed file.

8. See Sections 19 and 20 for additional information on Indexed
1-0 and Relative I-O, respectively.

16 - 47 November 1977

SECTION 16 PDR3056

S E A R C H

FUNCTION:

The SEARCH statement is used to search a table for a table element which
satifies the specified condition, and to adjust the associated index-name
to indicate that table element.

FORMAT:

|index-name
SEARCH data-name-1 | VARYING fe^-n™-^!

r. M J ™ J-4.- n Jimperative-statement-2\
[; WHEN condition-1 ̂ T g ^ E N C E J

r TlUnXi j-*- o J imperative -statement- 3\
[; WHEN condition-2 < ^ SENTENCE J

SYNTAX RULES:

1. Data-name-1 must not be subscripted or indexed, but its description
must contain an OCCURS clause and an INDEXED BY clause.

2. Data-name-2, when specified, must be described as USAGE IS INDEX
or as a numeric elementary item without any positions to the right of
the assumed decimal point.

3. Condition-name-1, condition-name-2 may be any condition as described
under Conditional Expressions in Section 12.

GENERAL RULES:

1. A SEARCH statement enables a serial type of search operation, start
ing with the current index setting.

A. If, at the start of execution of the SEARCH statement, the index-
name associated with data-name-1 contains a value which cor
responds to an occurrence number greater than the highest per
missible occurrence number for data-name-1, the SEARCH is termi
nated immediately. If the AT END phrase is specified, imperative-
statement- 1 is executed; if the AT END phrase is not specified,
control passes to the next executable sentence.

B. If, at the start of execution of the SEARCH statement, the
index-name associated with data-name-1 contains a value cor
responding to an occurrence number not greater than the highest
permissible occurrence number for data-name-1, the SEARCH state
ment operates by evaluating the conditions in the order in which

REV. 0 16 - 48

PDR3056 PROCEDURE DIVISION

they are written, making use of the index settings, wherever
specified, to determine the occurrence of those items to be
tested. If none of the conditions are satisfied, the index-
name for data-name-1 is incremented to obtain reference to
the next occurrence. The process is repeated, using the new
index-name settings. If the new value of the index-name set
tings for data-name-1 corresponds to a table element outside
the permissible range of occurrence values, the search termi
nates as indicated in 1A above. If one of the conditions is
satisfied upon its evaluation, the search terminates immedi
ately and the imperative statement associated with that condi
tion is executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

2. If imperative-statement-1, imperative-statement-2, or imperative-
statement- 3, that does not terminate with a GO TO statement, control
passes to the next executable sentence.

3. If the VARYING phrase is not used, the index-name which is used
for the search operation is the first (or only) index-name appearing
in the INDEXED BY phrase of data-name-1. Any other index-names for
data-name-1 remain unchanged.

4. If the VARYING index-name-1 phrase is specified, and if index-
name-1 appears in the INDEXED BY phrase of data-name-1, that index-name
is used for this search. If this is not the case, or if the VARYING
data-name-2 phrase is specified, the first (or only) index-name given
in the INDEXED BY phrase of data-name-1 is used for the search. In
addition, the following operations will occur:

A. If the VARYING index-name-1 phrase is used, and if index-name-1
appears in the INDEXED BY phrase of another table entry, the
occurrence number represented by index-name-1 is incremented
by the same amount as, and at the same time as, the occurrence
number represented by the index-name associated with data-name-1.

B. If the VARYING data-name-2 phrase is specified, and data-
name- 2 is an index data item, then the data item referenced
by data-name-2 is incremented by the same amount as, and at the
same time as, the index associated with data-name-1. If
data-name-2 is not an index data item, the data item referenced
by data-name-2 is incremented by the value one (1) at the same
time as the index referenced by the index-name associated with
data-name-1.

16 - 49 November 1977

SECTION 16 PDR3056

5. If data-name-1 is a data item subordinate to another containing
an OCCURS clause (providing for a two or three dimensional table),
an index-name must be associated with each dimension of the table.
This is accomplished through the INDEXED BY phrase of the OCCURS
clause. Only the setting of the index-name associated with data-
name-1 (and data-name-2 or index-name-1, if present) is modified
by the execution of the SEARCH statement. To search an entire two
or three dimensional table, it is necessary to execute a SEARCH
statement several times. Prior to each execution of a SEARCH state
ment, SET statements must be executed to adjust index-names to
appropriate settings.

6. A flow chart of the SEARCH operation containing two WHEN phrases
is presented in Figure 16-3.

7. Additional information may be found in Section 18, Table
Handling.

16 - 50
REV. 0

PDR3056
START

Index setting:
J±l highest permissible

occurrence number

condition-1

False

condition-2

False

^
Increment index -
name for
data-name-1
(index-name-1
if applicable)

3L
Increment index-name-1
(for a different
table) or
data-name-2

AT END*

True

True

PROCEDURE DIVISION

imperative -
statement-1

imperative -
statement-2

imperative-
statement-3

>

\ -ki

J

* These operations are options included only when specified in the SEARCH
statement.

** Each of these control transfers is to the next executable sentence unless
the imperative-statement ends with a GO TO statement.

Figure 16-3. SEARCH Operation Flowchart

16 51 November 1977

SECTION 16 PDR3056

S E T

FUNCTION:

The SET statement es tabl ishes reference points for t ab le handling
operations by se t t ing index-names associated with tab le elements.

FORMAT 1:

/ index -name
r

SET \irr- "«»* M . . .TO < \data-name
e - l \
-I J '"•

index-name-3
data-name-3
integer-1

FORMAT 2:

[index-name-6 < - . findex-narae-A /UP BY \ f ^ ^ -
^ \data-name-4_f • • • j r o H O Y / jdata-name-6

I integer-2

SYNTAX RULES:

1. All references to index-name-1, data-name-1, index-name-4 and
data-name-4 apply equally to index-name-2, data-name-2, index-name-5,
and data-name-5, respectively.

2. Data-name-6 must be described as an elementary numeric integer.

GENERAL RULES:

1. In any SET statement, data-names are restricted to binary items,
except that a decimal item may follow on the word TO.

2. An index-name should only apply to the OCCURS which defines it.

3. The SET verb cannot be used on a subscripted data-name.

4. Index-names are considered related to a given table and are defined
by being specified in the INDEXED BY clause.

5. If index-name-3 is specified, the value of the index before the
execution of the SET statement must not exceed the occurrence
number of an element in the associated table.

REV. 0 1 6 - 5 2

file:///irr
file:///data-name
file:///data-name-4_f

r
PDR3056 PROCEDURE DIVISION

6. In Format 1, the following action occurs:

A. Index-name-1 is set to a value causing it to refer to a
table element. That element corresponds in occurrence
number to the table element referenced by index-name-3,
data-name-3, or integer-1. If data-name-3 is an index
data item, or if index-name-3 is related to the same table
as index-name-1, no conversion takes place.

B. If data-name-1 is an index data item, it may be set equal
to either the contents of index-name-3 or data-name-3,
where data-name-3 is also an index data item; no conversion
takes place in either case.

C. If data-name-1 is not an index data item, it may be set only
to an occurrence number which corresponds to the value of
index-name-3. Neither data^name-3 nor integer-1 can be used
in this case.

D. The process is repeated for index-name-2, data-name-2, etc.,
if specified. Each time, the value of index-name-3 or data-
name-2 is used as it was at the beginning of the execution
of the statement.

7. In Format 2, the contents of index-name-4 are incremented (UP BY)
or decremented (DOWN BY) by a value corresponding to the number of
occurrences represented by the value of integer-2 or data-name-6;
thereafter, the process is repeated for index-name-5, etc. Each time
the value of data-name-6 is used as it was at the beginning of the
execution of the statement.

8. See Section 18, TABLE HANDLING for additional information.

16 - 53 November 1977

SECTION 16 PDR3056

S T A R T

FUNCTION:

The START statement provides a basis for logical positioning, within
an Indexed I-O or Relative I-O file, for subsequent sequential or
dynamic retrieval of records.

FORMAT:

rGREATER THAN 1
START file-name [KEY IS [< NOT LESS THAN >] data-name]

[EQUAL TO J

[INVALID KEY imperative-statement...]

SYNTAX RULE:

File-name must be the name of a file with sequential or dynamic
access.

GENERAL RULES:

1. Option 1: START file-name.

A. In an Indexed file, this option positions the file to the
value contained in the RECORD KEY data-name.

B. In a Relative file, this option positions the file to a
value contained in the RELATIVE KEY data-name.

C. In either file structure, if the indicated record is not
present on the file, control is passed to the DECLARATIVES
section if present; otherwise, the program terminates.

2. Option 2: START file-name KEY IS data-name.

A. In an Indexed file, this option will position the file to
the value contained in data-name (data-name is the name of
either RECORD KEY or one of the ALTERNATE RECORD KEYs).

B. In a Relative file, this option will position the file to
the file to the value contained in data-name as defined in
RELATIVE KEY.

C. In either file structure, if the indicated record is not
present on the file, control is passed to the DECLARATIVES
section if present; otherwise, the program terminates.

REV. 0 1 6 - 5 4

PDR3056 PROCEDURE DIVISION

3. Option 3: START file-name [KEY IS [
GREATER THAN
NOT LESS THAN
EQUAL TO

] data-name]

[INVALID KEY imperative-statement...].

For both Indexed 1-0 and Relative 1-0 files, if the option GREATER
or NOT LESS is specified, the file is positioned for the next access
to be greater than or less than the value specified in the data-
name. This option allows the keys to contain partial values.

4. The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name and the STATUS code returned is a 23 on a full
key.

16 - 55 November 1977

SECTION 16 PDR3056

STOP

FUNCTION:

The STOP statement is used to terminate or delay execution of the object
program.

FORMAT:

STOp fm \
zM. \ literal f

SYNTAX RULE:

If a STOP RUN statement appears in a consecutive sequence of imper
ative statements within a sentence, it must appear as the last state
ment in that sequence.

GENERAL RULES:

1. STOP RUN terminates execution of a program, returning control
to the operating system.

2. STOP RUN cannot be used in a called program.

3. If STOP literal is specified, the literal is communicated on
the console, and execution is suspended. Execution is resumed at
the next executable statement in sequence after operator interven
tion. Presumably, the operator performs a function suggested by
the contents of the literal, prior to resuming program execution.

REV. 0 16 • 56

PDR3056 PROCEDURE DIVISION

S T R I N G

FUNCTION:

The STRING statement provides juxtaposition of the partial or complete
contents of two or more data items into a single data item.

FORMAT:

c>rrT)TXTri Jdata-name-il , data-name-2
S™NG_ | i i t e r a l - l j [| l i te ra l -2 j " •

(data -name -4l , data -name -5
\ l i t e r a l -4 J [, l i t e ra l -5 J ' "

DELIMITED BY <
data-name-3
l i t e r a l -3
SIZE

data-name-6
DELIMITED BY <li teral-6

SIZE

INTO data-name-7 [WITH POINTER data-name-8]

[; ON OVERFLOW imperative-statement]

SYNTAX RULES:

1. Each literal may be any figurative constant (without the optional
word ALL).

2. All literals must be described as nonnumeric literals. All data-
names, except data-name-8, must be described implicitly or explicitly
as usage is DISPLAY.

3. Data-name-7 must represent an elementary alphanumeric data item
without editing symbols or the JUSTIFIED clause.

4. Data-name-8 must represent an elementary, numeric, integer data
item of sufficient size to contain a value equal to the size of data-
name-7 + 1. The symbol P may not be used in the PICTURE character-
string of data-name-8.

5. Where data-name-l, data-name-2, ..., or data-name-3 is an ele
mentary numeric data item, it must be described as an integer with
out the symbol P in its PICTURE character-string.

GENERAL RULES:

1. All references to data-name-l, data-name-2, data-name-3, literal-1,
literal-2, literal-3 apply equally to data-name-4, data-name-5, data-
name-6, literal-4, literal-5, and literal-6, respectively, and all
recursions thereof.

16 - 57 November 1977

file:///literal-4

SECTION 16 PDR3056

2. Data-name-1, literal-1, data-name-2, literal-2, represent the
sending items. Data-name-7 represents the receiving item.

3. Literal-3, data-name-3, indicate the character(s) delimiting
the move. If the SIZE phrase is used, the complete data item de
fined by data-name-1, literal-1, data-name-2, literal-2, is moved.
When a figurative constant is used as the delimiter, it stands for
a single character nonnumeric literal.

4. When a figurative constant is specified as literal-1, literal-2,
literal-3, it refers to an implicit, one character data item whose
usage is DISPLAY.

5. When the STRING statement is executed, the transfer of data is
governed by the following rules:

A. Those characters from literal-1, literal-2, or from the
contents of the data item referenced by data-name-1,' data-
name-2, are transferred to the contents of data-name-7 in
accordance with the rules for alphanumeric to alphanumeric
moves, except that no space-filling will be provided.

B. If the DELIMITED phrase is specified without the SIZE
phrase, the contents of the data item referenced by data-
name-1, data-name-2, or the value of literal-1, literal-2,
are transferred to the receiving data item, this occurs
in the sequence specified in the STRING statement, begin
ning with the leftmost character and continuing from left
to right until the end of the data item is reached, or
until the character(s) specified by literal-3, or by the
contents of data-name-3 are encountered. The character(s)
specified by literal-3 or by the data item referenced by
data-name-3 are not transferred.

C. If the DELIMITED phrase is specified with the SIZE phrase,
the entire contents of literal-1, literal-2, or the
contents of the data item referenced by data-name-1, data-
name-2, are transferred. The transferr proceeds in the
sequence specified in the STRING statement to the data item
referenced by data-name-7, until all data has been trans
ferred or the end of the data item referenced by data-
name-7 has been reached.

6. If the POINTER phrase is specified, data-name-8 is explicitly
available to the programmer. He is then responsible for setting its
initial value. The initial value must not be less than one.

7. If the POINTER phrase is not specified, the following general
rules apply as if the user had specified data-name-5 with an initial
value of 1:

8. When characters are transferred to the data item referenced by
data-name-7, the following occurs. The transfer behaves as though
characters were moved, one at a time, from the source to the data

REV. 0 1 6 - 5 8

PDR3056 PROCEDURE DIVISION

item character position referenced by data-name-7 and designated by
the value of data-name-8. Data-name-8 is increased by one prior to
the move of the next character. The value associated with data-
name-8 is changed during execution of the STRING statement only by
the behavior specified above.

9. At the end of execution of the STRING statement, only the por
tion of the data item referenced by data-name-7 (that which was
referenced during the execution of the STRING statement) is changed.
All other portions of the data item referenced by data-name-7 will
contain data which was present before this execution of the STRING
statement.

10. Data transfer to data-name-7 terminates when the value in data-
name- 8 is either less than 1, or exceeds the number of character
positions in data-name-7. Such termination may occur at any point
at or after initialization of the STRING statement. If termination
occurs as a result of such a condition, the imperative statement
in an ON OVERFLOW phrase is executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions
described in General Rule 10 above are encountered, control is
transferred to the next executable statement.

16 - 59 November 1977

SECTION 16 PDR3056

S U B T R A C T

FUNCTION:

The SUBTRACT statement subtracts one or more numeric data items from
a specified item and stores the difference.

FORMAT 1:

SUBTRACT fdata-name-literal-1 0 Qs data-name-2
iteral-2 .. FROM data-name-m [ROUNDED]

[ON SIZE ERROR imperative-statement]

FORMAT 2:

SUBTRACT r

FROM {data

data-name-it L ds
literal-1 J , li

•}

data-name-2
literal-2

•name-mi
KLiteral-m GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. Each data-name must refer to a numeric elementary item, except
that data-name-n (following GIVING) may be an elementary numeric
edited item (report item).

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. If all
receiving data items were to be superimposed upon each other,
aligned by their decimal points, their composite should not exceed
18 decimal digits in length.

GENERAL RULES:

1. In Format 1, the effect of the SUBTRACT statement is to sum the
values of all the operands which precede FROM, and then to subtract
that sum from the value of the item following FROM. The result is
stored in data-name-m.

REV. 0 16 60

PDR3056 PROCEDURE DIVISION

2. In Format 2, all literals and data-names preceding FROM are
added together, the sum is subtracted from data-name-m or literal-m,
and the result is stored in data-name-n.

3. See the rules for arithmetic statements under Procedure Division,
General Rules. The ROUNDED and ON SIZE ERROR options may be used
when truncation of results could occur.

4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS
OF COBOL, Algebraic Signs.

16 - 61 November 1977

SECTION 16 PDR3056

U N S T R I N G

FUNCTION:

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

FORMAT:

UNSTRING data-name-1

DELIMIT BY [ALL] { ^ H " 2 } [OR [ALL] { g ^ " 3 } '

"INTO data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

, data-name-7 [, DELIMITER IN data-name-8] [, COUNT IN data-name-9]
•

[WITH POINTER data-name-10] [TALLYING IN data-name-11]

[; ON OVERFLOW imperative-statement]

SYNTAX RULES:

1. The ALL phrase option is not the figurative constant ALL.

2. Each literal must be a nonnumeric literal. In addition, each
literal may be any figurative constant without the optional word ALL.

3. Data-name-1, data-name-2, data-name-3, data-name-5, data-name-8,
must be described, implicitly or explicitly, as an alphanumeric data
item.

4. Data-name-4 and data-name-7 may be described as either alphabetic
(except that the symbol B may not be used in its picture-string),
alphanumeric, or numeric (except that the symbol P may not be used
in its picture-string), and must be described as usage is DISPLAY.

5. Data-name-6, data-name-9, data-name-10, data-name-11 must be
described as elementary numeric integer data items (except that the
symbol P may not be used in their picture-strings).

6. No data-name may name a level 88 entry.

7. The DELIMITER IN phrase and the COUNT IN phrase may be specified
only if the DELIMITED BY phrase is specified.

REV. 0 16 " 62

PDR3056 PROCEDURE DIVISION

GENERAL RULES:

1. All references to data-name-2, liateral-1, data-name-4, data-
name-5, and data-name-6, apply equally to data-name-3, literal-2,
data-name-7, data-name-8, and data-name-9, respectively, and all
recursions thereof.

2. Data-name-1 represents the sending area.

3. Data-name-4 represents the data receiving area. Data-name-5
represents the receiving area for delimiters.

4. Literal-1 or the data item referenced by data-name-2 specifies
a delimiter.

5. Data-name-6 represents the count of the number of characters
within data-name-1, isolated by the delimiters for the move to
data-name-4. This value does not include a count of the delimiter
character(s).

6. The data item referenced by data-name-10 contains a value
which indicates a relative character position within the area de
fined by data-name-1.

7. The data item referenced by data-name-11 is a counter which
records the number of data items acted upon during the execution
of an UNSTRING statement.

8. When a figurative constant is used as the delimiter, it stands
for a single character, nonnumeric literal.

When the ALL phrase is specified, one occurrence (or two or more
contiguous occurrences) of literal-1 (figurative constant or not),
or the contents of the data item referenced by data-name-2, are
treated as if it were only one occurrence. This occurrence is
moved to the receiving data item according to the rules in General
Rule 13D below.

9. When any examination encounters two contiguous delimiters, the
current receiving area is either space or zero filled according
to the description of the receiving area.

10. Literal-1, or the contents of the data item referenced by data-
name-2, can contain any character in the computer's character set.

11. Each literal-1 or the data item referenced by data-name-2
represents one delimiter. When a delimiter contains two or more
characters, all of the characters must be present in contiguous
positions of the sending item and in the order given to be recog
nized as a delimiter.

16 - 63 November 1977

SECTION 16 PDR3056

12. When two or more delimiters are specified in the DELIMITED BY
phrase, an OR condition exists between them. Each delimiter is
compared to the sending field. If a match occurs, the character(s)
in the sending field is considered to be a single delimiter. No
character(s) in the sending field can be considered a part of more
than one delimiter.

Each delimiter is applied to the sending field in the sequence
specified in the UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving
area is the data item referenced by data-name-4. Data is trans
ferred from data-name-1 to data-name-4 according to the following
rules:

A. If the POINTER phrase is specified, the string of characters
referenced by data-name-1 is examined beginning with the
relative character position indicated by the contents of
data-name-10. If the POINTER phrase is not specified, the
string of characters is examined beginning with the left
most character position.

B. If the DELIMITED BY phrase is specified, the examination
proceeds, left to right, until either a delimiter specified
by the value of literal-1 or the data item referenced by
data-name-2 is encountered. (See General Rule 11.) If the
DELIMITED BY phrase is not specified, the number of char
acters examined is equal to the size of the current receiv
ing area. However, if the sign of the receiving item is
defined as occupying a separate character position, the
number of characters examined is one less than the size of
the current receiving area.

If the end of the data item referenced by data-name-1 is
encountered before the delimiting condition is met, the
examination terminates with the last character examined.

C. The characters thus examined (excluding the delimiting char
acter^), if any) are treated as an elementary alphanumeric
data item, and are moved into the current receiving area
according to the rules for the MOVE statement.

D. If the DELIMITER IN phrase is specified, the delimiting
character (s) are treated as an elementary alphanumeric data
item and are moved into the data item referenced by data-
name-5 according to the rules for the move statement. If
the delimiting condition is the end of the data item
referenced by data-name-1, then the data-name-5 is space
filled.

REV. 0
16 - 64

PDR3056 PROCEDURE DIVISION

E. If the COUNT IN phrase is specified, a value equal to the
number of characters thus examined (excluding the delimiter
character(s), if any) is moved into the area referenced by
data-name-6 according to the rules for an elementary move.

F. If the DELIMITED BY phrase is specified, the string of char
acters is further examined, beginning with the first char
acter to the right of the delimiter. If the DELIMITED BY
phrase is not specified, the string of characters is further
examined, beginning with the character to the right of the
last character transferred.

G. After data is transferred to data-name-4, the current re
ceiving area is data-name-7. The behavior described in
paragraphs 13C through 13F is repeated until either all the
characters are exhausted in the data item referenced by data-
name-1, or until there are no more receiving areas.

14. The initialization of the contents of the data items associated
with the POINTER phrase or the TALLYING phrase is the responsibility
of the user.

15. The contents of the data item referenced by data-name-10 will be
incremented by one for each character examined in the data item
referenced by data-name-1. When the execution of an UNSTRING state
ment with a pointer phrase is completed, data-name-10 will contain
a value equal to the initial value, plus the number of characters
examined in the data item referenced by data-name-1.

16. When the execution of an UNSTRING statement with a TALLYING phrase
is completed, the contents of the data-name-11 will be a value equal
to its initial value, plus the number of data receiving items acted
upon.

17. Either of the following situations causes an overflow condition:

A. An UNSTRING is initiated, and the value in the data item
referenced by data-name-10 is less than 1 or greater than
the size of the data item referenced by data-name-1.

B. If, during execution of an UNSTRING statement, all data
receiving areas have been acted upon, and the data item
referenced by data-name-1 contains characters which have
not been examined.

18. When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW phrase has been specified, the im
perative-statement is executed. If the ON OVERFLOW phrase is not
specified, control is transferred to the next executable statement.

19. The evaluation of subscripting and indexing for the identifiers
is as follows:

16 - 65 November 1977

SECTION 16 PDR3056

A. Any subscripting or indexing associated with data-name-1,
data-name-10, data-name-11 is evaluated only once, im
mediately before any data is transferred as the result of
the execution of the UNSTRING statement.

B. Any subscripting or indexing associated with data-name-2
through data-name-6 is evaluated immediately before the
transfer of data into the respective data item.

REV. 0 1 6 - 6 6

PDR3056 PROCEDURE DIVISION

U S E

FUNCTION:

The USE statement specifies procedures for input-output error handling
which are in addition to the standard procedures provided by the input-
output control system.

FORMAT:
r *\
file-name { X*V^f^EOT TOM I

gR£Qj£] PROCEDURE ON <
INPUT
OUTPUT
1-0

SYNTAX RULES:

1. A USE statement, when present, must immediately follow a section
header in the Declaratives section, followed by a period and a space.
The remainder of the section must consist of zero, one, or more
procedural paragraphs which define the procedures to be used.

EXAMPLE:

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.

paragraph-name, [sentence] ...f ...}]
2. The USE statement itself is never executed; rather, it defines
the conditions for the execution of the USE procedures.

3. A given file-name may not be associated with more than one
DECLARATIVES section.

4. The words EXCEPTION and ERROR are interchangeable.

5. The files implicitly or explicitly referended in a USE state
ment need not all have the same organization or access.

GENERAL RULES:

1. The DECLARATIVES section is executed (by the PERFORM mechanism)
after the standard 1-0 recovery procedures for the files designated,
or after the invalid key condition arises on a statement lacking
the INVALID KEY clause.

16 - 67 November 1977

SECTION 16 PDR3056

2. After execution of a USE procedure, control is returned to the
invoking routine.

3. Within a USE procedure, there must be no reference to any non-
declarative procedures. Conversely, in the nondeclarative portion,
there must be no reference to procedure-names which appear in the
declarative portion, except that PERFORM statements may refer to
the procedures associated with such a USE statement.

4. Within a USE procedure, no statement may be executed which
would result in the execution of a USE procedure previously invoked
but not completed (that is, a USE procedure, which through pre
viously invoked, had not yet returned control to the invoking
routine).

REV. 0 15 " 68

PDR3056 PROCEDURE DIVISION

W R I T E

FUNCTION:

The WRITE statement releases a logical record for an output or I-O
file. It can also be used for vertical positioning of lines within
a logical page.

FORMAT 1:

WRITE record-name [FROM data-name-1]

[
/AFTER "\ / integer LINE(sfl
(TORE/ADVANCING |p A G E * JJ

FORMAT 2 :

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement]

SYNTAX RULES:

1. Format 1 can only be used for sequential files.

2. Format 2 can only be used for Relative I-O and Indexed I-O files.

3. Record-name and data name must not refer to the same storage area.

4. Record-name is the 01 level record-name of a logical record,
described in a Record Description entry in the File Section of the
Data Division.

GENERAL RULES:

1. For both WRITE statement formats, the associated file must be
open as OUTPUT or I-O.

2. In Format 1, if the FROM option is taken, the information is
moved to the record area prior to the WRITE. If the data being moved
is longer than the receiving field, the data is truncated to the
size of the receiving field. If the receiving field is longer than
the data, the remaining area is filled with spaces.

16 - 69 November 1977

SECTION 16 PDR3056

3. In Format 1, if the ADVANCING option is taken, print control
spacing is indicated. The first position in the record must be
reserved as FILLER for the print control character being generated.

A. If the BEFORE option is taken, a line is written before
advancing.

B. If the AFTER option is taken, spacing occurs, and then
the line is written.

C. Integer LINE(s) is the number of spacing lines required
between data lines. Integer may be 0 to 62.

D. PAGE skips to a new page, then a line is written.

If the ADVANCING option is not taken, the default is one line.

4. In Format 1, the value of integer is as described in Table 16-4.

Integer Carriage Control Actions

62
PAGE

Overprinting
Single spacing
Double spacing
Triple spacing
4-line spacing
5-line spacing
6-line spacing

62-line spacing
Skips to top of new page

Table 16-4. Carriage Control Integer Values

5. In Format 2 for Relative 1-0 files: prior to a WRITE statement,
a valid unique value must be in the primary RECORD KEY data-name.
If the FROM option is used, the unique value in RECORD KEY data-
name must be in the relative location of data-name-1. If the
primary key is not unique, the invalid statement or the DECLARATIVE
section will be executed. Refer to Table 19-1 for Error Conditions.

6. In Format 2 for Indexed 1-0 files: the INVALID KEY clause must
be specified if the DECLARATIVE section is not applicable. The pro
gram will terminate if an error code condition arises (refer to
Table 20-1.)

REV. 0 16 70

PDR3056 PROCEDURE DIVISION

A. For Sequential Access:

If a file is opened as OUTPUT, records are placed in the
file in sequential order. The first record would have a
position of 1, and the record number returned into the
RELATIVE KEY data-name would be 1, etc.

B. For Dynamic and Random Access:

The value of the record number must be placed in the
RELATIVE KEY data-name-1.

16 - 71 November 1977

SECTION 16 PDR3056

Sequence
(PAGE) (SEW4L) .

3 4 6

|B £XAHPl€" C O B O L S t a t e m e n t Ke"F2_
20 32 36 40 48 52 60 72

TTT

0|2; ^

: S S O S S E [H 0,3, m&m
0i4' SiTftKJT-Pfi QCiRiftHlc
0!5 fcS&g Ufi4 £HTfi I T d £££A "y ,vlgW fclL&
d 6 |
0|7

ffiS^LM
^•clc'e

M M I
PTI dg^n"d-,oif

i-W upujarfc

mm:
&L&

i i
ih a:

0'8' r r c^i^^T[fi-iU£iiBrp= 4^ -f-T-r 0.9' . ! | l
Opj£lNl.^jJ!ltEkil! 14JSJI- f£i

1!0I ^Q rT^_iiH^iP£C£
^

dtLi. I I !

CS£BfeXBJS i i i
1 2, HO-V;EJSIPA CE3 TTd Md- i jg foe to
13

1 4
1 5

1 6,

ppg:N.
I I !

gJsfiffiBigxjL

^2U£ UT4 £tishi PJlLk J 'dPE'M !Q orrp'u
ttfflasfcGi

WiXH£-i!£I
^

lAiil
M_MJ£ftteg

TLk l^T- jP lLE^ I I I

^ £ J U f t b ^ M & •PASET

17 '

1 8

20

UJJ_
Jfi£ft!fc. £fc£fc£l XT; !f\u4Bi.

i i fir
Sfi&Edm

Jaa usr

11
1 1 i 5

KITE: eteMT
KGlEUtQi jPtiiMi:
liXklE

M £ ' ^ f tce^

-OKI a*L
nyegeirflepfj ! : !

vol ftu.S-1
i i i

HKIBtittl JEci m 1 I ! ±_L
i ! I

l| fTTo ijjli ! I

I ' M bi'R
S

! I I
oh
0 21

G£!w> jffit I

K'&Vl tilfeiP LtaL EHiX -^T"ftlid4 i i i TT
i i

0 31

oUi
I ' M l |

.r^-JMaleeiffcg^
i J^MI-^ px£. I ' !

i I

015'

C6
071

0 8 1

g M - F E l g I T I ^ t M 21&.

dill
uPWe-okiix*

0_iOUF
SUM T'MT!-

cmmjE. fiBJe" Tb 'flgir
£ 0 £ _ M T eig| [M ^ c i t e

J _ I

^•n-Liiye. i

fll jLljiJlES
-T—r

0 9

1 I I

lllL

JM£&£ S:P'AC.£i5
MSP L a i
QP£K1 Xj-.O
IF o.epflfrr-qp

'EIKJID
Id ipgJlvti-iLllKl

mx
\£sKlJ&£

eoiTo.
^ATC

I I

KjV'-'Ffcl-EU
l-i >

U l
I I

I I

1 3' ;G|d fT'd 'GET:- MOT-
fi

iblS yjiji A i
l!4i IJXSIT!: M&

1'6

1 9

201

MMG
gjgLg

iL'olmi -VI AIL y&i
0'g.M L3&T

H^C JjQifct

££&? M i 35
rrtk|u jL^ati-taiotig.

J_L I I I
' I

±JJ LMom
1 ' ' ' .g£liE

j G M .

M±L
.-•\Mii
LIST

LUI JEJI|d_!SW£L
2lISMm L ^ a z M m

&*L£u

^x
I I

i !

I I ! I , i I H ^ £ i £ X &s_TI|ci_&l &TB:. i I
2£&£ fiiifcL LTIST31 I S

i I I
I I I I ! : I

Vpyi.Z lW*. v/^iLOJeTTTaJEl
g;^ iiT]sirrbQvl.£

££&£ &££t LIST v| HTHRiul LTsrri-

i i

T T
_LL ! I J . I I i !

REV. 0 16 - 72

PDR3056 PROCEDURE DIVISION

Sequence C O B O L S t a t e m e n t

111 d TO ftfc ft:p-M gx^- bT^^c;t'dCYl-R.TOEn.
1 2i IISG1L sa&ii m gecro,e!vi FILIE 1 0 i s i iki'orr .'ess

gjggg IJ\
md LA srr-MrtMF.

1 31 tigDTE P'gTNJiT- LXMlE FgioHi m &2LE£ WMQfc*t& .Pfl^C
V4I gel rTfo: glgft'P-Kl 0 £ r TiiTeiec-rbgv-g'ecidRO
1'5, Lit Sti2. STAle.Ti ' b l RiecTQiev- E H I E KIEV T ^ I KJQTTJ liCiSfb xm hi\ yrtftT£z
1'6| 11 ^gia-T'c Pe I'KJT- UiJl£ £^ tUkE&M^
1 7j I d J a R^-NJ^^T-

L i i yna . !
119 ! I

.̂ TAlRlr M g e c r
WflTTEj PRIVIT-

Dre'dcJTTQR.Y- ^dcolrgo
AI£i£5LJL MJftjMCXM£ ?lm

C&Xz ECL€ i*i£Y IS, K/OT! L g ^ S Sii?JLMffliC)

L3MS. £& M WlgATNf g AriP-TJpg; A f e V i f f i ^ T ^ T PAG
2 0 ! Ga Oi flSIVlV-M Q j - f - ttliglECToi? v- TOcoie.ft

UTSTP41
sTft'ef b i £ H ^ ^ e ^ PIJCR JK£Y xs Mmi LES& Tffiftdi FUfcSffl- MAHI.
WATT g P'ElMlTr LpM i f f iO . Mj MEftfrtg ftln-gg; tybVi^cxAiid . f f lp lc

Rl^lD-'MCiXT-iMRgCLTdgY!- glEjCio «Hii
mm. m.^^cro MnE HCEt KJlBT lECQi AiTT iCMti !C d lie.

I - - U -
0,1 dAk Usui*.

ursT ,D0,Y4

gScfTQ £5 %-
££!o& Dl "TTc J2&UJI1 km

0i2| mniE !fl&otn= xidiJlsJ

SSSSSEL
SdjriLteE^ £hi EYIT- Oi;e JFfcTOeV -R!efcoia E

0'4i I I

0 !5i £ M : • i '
0 6

017 ' I I

0'8 yeX\- JM? £"X|TT -l!Ktdux!g YJ.
0*9 flE^IPlJRiV currg! rngBy T>(|P£
liO ^ a g LM m WM FjULg . sgq ,1
in brsip kML

s ' -U fliEifri'
1!2 bXSl£ L.ft'V! J^elyfee [i

1131 I i i ! frrsieuftrtj dwftividB !

M ! riXs'^LirtiY
115

16 rF c
1'7

1 '3 I 1

H9I

2!0l

vl M
Aieicie PT c

Qsmz i I

MSt 1 .FgftHI TTiYI.
V4 A'g'-

EF Ct4rtfg
r.F cMigi-

EE CiHAft

1! b I M£
l i in >-!>!'

Cd r d ft J M
Jk i i TTQ! t

i !

1 ' ^ V , /I /I Gid TTq CrtflWdgT.

1 ^ ic: JffiQl TTd >f!
MjJ /I

g.rtPuPj

_ ^ L TTol 'g gMi: ESliE:
i S>IJSP LM. SMU

^ i S P k M ^ M
AlLTT rrel f t^s T V 9 F
jen^il M l

CHhft^'rlU.
i i

Gd 5 Qj GET-'IAEKiTI- jjiJoiuIrgtvi. i !
i I

I !

16 - 73 November 1977

SECTION 16 PDR3056

Sequ(

1 3

i

1
S l

i

j ;

1

]

1

, i

i

! 1

I

1

I '
| i

1 i

i
i

I !
I |

1

i 1
1

!
i i

I

i !
i I
! !
1
1 1

i

I i
1

! 1

i
i i
i !
I

!
J 1

snce ;'
_ _ _ _ _ o

4 6 7

o|,
0l2
ot3 i
0|4l 4
015; *

0^6 |

0 7 *

0 8

019

HO

ih !
1)2!

1.3I

1'4|

l'5|

ikl i
\\7\ 4
l,8l

li9i

2'0!
I

'
1
!

1 !
1

: |
o i l 4
012! 4

0I31

oUj
0J5|
0|6|

°!7;
0|8

0 9

1 Oi

i l l !

l|2
1|3|

M .
1-5,

lj6|

\\?\

-
1 [_> j
2!0
! |

1

1
A IB

1

C O B O L Stc i t e m e n l ' REF2.
8 |I2 16 20 24 28 32 36 4 0 4 4 4 8 52 56 6 0 6 4 68

Mof- lWvvcJUl -
i 1 1 1
j i i 1 ! 1

TTrrr
i 1 1 i i

1

i 1 LI

1

1

.btalJTpcGK
1 1 !i 1
I I I

' I ' l l
! 1 j j ! I

1 ' •
' M l ' • i

! 1 ! ! ! !
i ! ' !

I ' l l 1

tteiitfficoit!
1 M m
i i l l i l i
1 1 ; 1 - i i

l | l l H
1 j 1 i j '
! 1 1 1 i
1 I J 1 i

1 1 ! ! | ! i
\ 1 1 ! i 1
\ \ \ \ \ \ \

clm^L\
! l l] : i l
J ! I i ! , i
! i | 1 I 1 !
1 1 1 j 1 ! 1 1 i ! 1 ! 1 1
M l | ! i
I ' M 1 1
1 1 1

l i j l h
' , , l i
i ' i i

1 1

I I . ! ! J

1 !

I

1
i

R _ « _ - ' * _ ! T

i ! 1 i
1

1 i
I ' M 1 ! 1 1 1 : |

M M ! 1
i | l (i !
1 ! ' • ! 1
1 1 1 ! |
i I ' M

1 1 ! ! 1 '
I i l

1

!
f i

A_i!e_-
tfaiSiP_A

T H
!
!

1 !
| ;

•' I I
prsPL .
5>'€lR!p<_;e
V^'Fotf
Udljrd
Ml !

1 ! 1

Qa Toi
i l l
M i !

I.! Si !
DEbPLjA
WC_c'_PT
fe!e*to ft

i 1 |
tJFJli_Ti_

1 i I
SfdTu
II
1 1

___________£___]___
__:______
birslp LA
brttelPLJA
tSEsIP Lj«
^CC!_PlT
an k _
_LLLM-
YiT^FlIp
£d k_
M

l!.i 1 1
__I_^_Li
Aj__Ff»T
Holv/le',_
m>Ki_ j_
'*_ If
, ! ! 1
! i 1 i

1 1 |
! ' '

bW 1T01

XLl^fc sik4-
_|_Ti-^GKT]-IlJfi

1
1

— ' — — ' -• i

! |

iV v ivJKifr£r<| b fih
M P^i^HA:Tl-llKl!C
|M| H|_:\i;_-iRJe^J
^iCElotrddvJ-RiE
! ffijslPi^Yl fp
! telp_*w fei
ftEiri-JMlE^-TKlC
| 1 M l M

I 1 1 1
! 1 ' '
j 1 ; : 1 1 j
iyj vlSK$TTFj£ IPttlc
1 'fMdtslE-'Wd F-g
iu« ejciiroev-'paiL
1 ! Wtd-i__vj|c|_4-vJ(̂
•; _:_i<_€C.Tf_«Y-t
1 ' Moi-!«,_|_|rt-^
^ G T T - K l E X m - l l M I C

LL T T "
14 1 1 1

rf v!evirek K C .
\s s\\\^T\-m^
k Ms[TlATr_T |
iV| IflTlefiHld j
j_t___=m|__i!r_^
1 Gd-TTr -x i f tH^ ,
|«e«bJAL'iiii la.

I N_|pi_Mimics!
YJ v \A^_Kld TV|P
•G,ETi-!\lpym-rrvl_

UM- ~ -i
I ' l l !
yv v|qKipr€Je! L^e
" i\A^-!_A^TJ-fifth
|P!ft_es! T r | ii__i«
k!-_A|siT-^r(fci
ree^cToev-Fri
! i rrui\/!A_!nD _j{
1 I D T S P L ' M ! N 5

5)t^PiJwY| tjl
I Gi<_ [T'd blET|-
clu HKiCrl_-!eteCcsf

|

]^|iolojieD l=
__r_£Jv . i

I ;

'

Tr M
j i i

' J>:
|

I
i I

i i
j i

"W e.E___i___'F(__ !(
y-r.i 111
M M i; I
|(V;Od_ IkNlAl l IJ) I
JL|E--kTJATU5>!
"_>p_!fliVl-Sr:e!
;jmri_vM ! '

Mi
I M l i M

ju[_ WJM_6_|
I ! »

de i7rnY _ : !
J_f 'UiJVAlLTir
ffi-.l I 11'
y_E keo'det
M E . I i
lUlR.V. I I

^ T i i
' To >>!_ .O'v+ifa
3 *l l i l ' .! I i
I ! / I i

" M i -I M
I j = i^ ' J I I
i_] = fV'.! M
' | ! I !

^AI_2-W_]T-21 !̂ ;_
!ck tejo|-Trl-r>
!_̂ _^7rFe(_:n
jiitxclvl- !
; M ! i
l i i ' i:
\r WJAIHEM;
i_r. | I i i

»j_icTiddv-^!«
rrin iiWs-r-iwif
.!_! < l ^ l T ^ !l
^Y! NE_PLftiyi
NTJAT_^ = j ' i
__IP L |̂Vi- M i_ !
MeYj-ri-liMlqaii
dr>. i I I i i !

i

I
I i
I |

i 1 1
"To jl

i I

i ^ft
11

:M , ^

i i

M

klJ(__

i

I
i

• I i

'ftiDhi
d^
TTfi iYi

i i

I
i

[i

i i

i • i
I | I *r\m

\ti^,\
A§iTl

x '\ i f f

FT 11
Ml

' RL f̂l .1
, 1 1

1

r ^ L >

1

1

\t)lr>M

i

'Mi\
! 1

1 j
1 1
1 i 1 ; i 1 1 ; 1

_._I_D1_

/ Crd
j

vJAkiir
XJ_

1
1

«'i.
' j

I !
i 1 1
1 : :

I 1 1
1 i 1

1 ' '
t\ LJTH

1 I 1
A ! (^ 2

1

! j
1

1 1 1
* ! ' 1

M
- Ki!(vh!_
hVrUt
e.-shif

1 1
I !

1

iV-jMT

| !
1
1 -

I

l !

j
1 1
i !

I 1
1 1 1 ! I 1 • 1
1 1 1

1
rl_<_t€

1 1
1

rn^
1 !

^ l^ev
1 !

1
!

1 1

! 1 1
i j ;

i |

ifelM
1 1

i ' i

:»m i 1

1 | 1
i

1 1 !
1 j

h i
! 1 1
1 1 ;

_ *
" ! 1 I

\m |-
\TUS

i |
-

1

it M
1

1

! i

X- i !
j !

1 1
i I
i 1 l !

! '

i
h i 1

h i '
i ! l ! 1

& .1
1 1 !

! ' I
1 I 1

Grid 'TT_
! 1

I 1
l 1

|
' !

1 j 1
\

1
1 ! 1 i
Ml
111 :
i i i
1

! 1
-lAlijrqi

1 : i
1 i i

M (
M 1

j ! !
I :
1 ; i
1! !
1 ; 1
1 1 1

1 ' '
1

'1 u s
I I I 1 :

j ,

1

1 1 1

|
1 j

M
! !

1 ' 1

-L-LL-It 1 : j

I ' M 1
1
! ! I 1

! H i
i i i :
M i |

: !

1

M ' 1 1 ! ' 1 1 !
1 :M ||

T M I
1 1 i I i l l 11
I M ! 1
i l l !

tj^jpl I I I 1
1 l i l II
! I'M 1 Hi
! I I !

M"T^
i

1 M I 1
i ' 1 1 ••
1 i I 1 M T M T

i i i l
: i i

1 i
' 1 1

' M i !

! ' 1 1 !

1 ' i
M l 1 1 i !

1

M | i
! : , i !

i " i
I • !

r i - Ki'A îE- ! |
; • 1 1
1 M '

i M : '
! 1 ! • ! I 7

I I _____ : J_L

7U^

1

1
i~
1

11.
! j

i
i ;
1 1
1 1
! . *
1 ;
1 j

'; j
1 1

—LL,
1

1

Ii
1 •

M
; 1
11 1

t

11
11
1

II
1

1

!

! 1
1 1
; |
i !

1 -*

rr
11
11

\
< 1
1 1

1 1

' u*̂
1

1

1
11

REV. 0 16 - 74

PDR3056 PROCEDURE DIVISION

* J

>•*

* J

*

<•»

"-Sequence ;
»AOEI

i 3

|

I J
1 |

1
\ 1

1
1

1

1 1

l

M
I
1
I
1 i

i

1

k .

1

1 •

1

1 !
1

! !
i

,
^ t

i

I
i

i i

i

i

i
i

i

i i

I
i

i

I i
i

! !

(SERIAL) u

4 6 7

0|1 J

0|2

013

oU!
0151

0 6

0i7

0l8

0I9» |

HO!

l i 1

1 2'

1 2! 4

1 31

M !

1 5\

1 6.

1 7

1 8t
;

1'9

2 0 '

I

1

4
Olll
0!2!
0'3:

0,4;

0|5 '

O161

07!
08 |
0i9!
llOi
i;n *
V2\ ^

ml
l ,4 i

1 51

l '6 i)

1 7 ^
1 3

l | 9 '

210

1 i

1

1 I
1

A IB C O B O L S t a t e n l e n t eep->.
8 |I2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

i M M
Rf|AJb|--K!LT

: M M i
i 1 '

, 1

' 1 1 ' !
1 ! i i

! i ' '
i 1 1 '

1 1 ! 1 ' 1
, i ! : 1
I ' l l

1 j |
1

1 ' 1 l 1

. ! i i !
K'tflibj-ftL-r

j 1 1 • 1
1 1 | 1 i

! i 1 i i

1 ! i i i 1
I , ; J : 1

! i * ' '
[, : l 1

! 1

1 . 1 1 i
r i l] | ' !

KieaiBj- iAi i W
1 > ••

1 1 ' 1 i ' l 1 1 !
• I ! 1 |

2 .
bilSiP
Pit'c'e
MjOlVlg
N&lvte

%\£f\\>
1 \ j

!
1 ' !
i

QQ T
i !

j J '
brsip
A!CCC

Hoiv/if
^0!\JG

REM
I

! I
1

1

' 1 !

Go! T
i 1 1

HJJ !
M a p
PiiC'CE

Mbk/t
1 ' ' 1 Hlftij'p

1 1 1
! 1

1 1 1

1 ! ! |

1 !
1 1

r 1 ' 1 '
V j : 1 1 ! i
c W y f e £ - R

1 •
1 ! [! • 1
1 i i i '

• ' ! ' ! i
[! , 1 ,

Hcwd-fcer
I !

! | 1 . |

| ' 1

I ' l l '
l | 1
1 1

. i !

Wdt:
1 1

1 1

i i i
1

! , I

j i i
^cide
bcr's.p
v * W

• l '

•

I P Mi

! j

! : 1
Lnivj
P|T to

alplp
M s i -
^ r e

TMV'rt
tICSIP
fcE&P
(r-Ol T
'a c.*t

1 1 !

1

L.WVI
PT \i
'S-P'ft
iWS'-

' foTP
D4.M.A
billSiP
DTS.IP
G-!ol T
t | 'CM

i ;

1 |
(jflYJ
Pi-T vvj

SPt i
WSi-

• T f t *
T^l ' fc
toTSlP
bX^P.
GTH T

! 1 i
! !

vi. !
UflV
MeH

1 !

«
1

$!-•!?€
talis p

1 P-O T
^ F lu|s-L»>
' i NO M 0
1

1 1

[

N IE!MT

si-jshr
ddsi

1 -
STftfT
^CTo
L-ixiDJ
LifliVj
Lf^Y!

01 ;G-;e
f\NllCr6

| j
| j

Vfiw
SHKE
CJGJSI

ft'TiSfT
ECITA

LT.N
UftlYl
L!VVY|
4 Qe
fliK^E

1 ; '
i 1
1

seiMT
SI- :FJI
c|e«j
FT*!*
ticrt^
LO14-
u.'Alyi
_.«YI
d GjP

i . ;
1 1 '

tf^'P
£OiS£

' !

1

CJQifc'C
vJfllYl
"oi <SrG
?*T-N

ta1-
1

i
' 1

• 1
1 !

FS 5
A T t l .
r o i b

rl 'To
BJYJ-'F
K^Y1

V|STift
bir^p
T.-We
- RiCC

I '
1 1

EHUfc
RiTrtt
Tje> 3)
«lt)l T
IRY I -F
idEivi
x5.n>
Drs ip
T-N'E

1 1

11
] 1

f ^ ' F
Rj^Ti-
fo1 I)
T-i^A
«^K-F
* N ^ ^
v^Tft
"brsip
T-!vid

1 ; !
1 '
1 ;

\}&L
A T - ' I

1 1

l 1 !

=1 ft
V |N'di

T
rlrtjiif '

, j

ifwelCTJc
l̂ rdftTTt
1 '

blrs P Lf
TUlS =!
lieiv-bh
vtri-lrislc
ckLd.

1 ! i

• i !

HRJTJrtblf
., 1 1

LRlEiCTc
d TSiIRiT
T L ' E ; <!e
OES!P\Jf
rus -
L.n\|-bft
* ! ^ - : I M ! < S

c e j b . 1
\ !

I ^ S T ^
WIAHIG .

ilcjdCTV
He T'o;
TJLC ^
VfcbiP L!<
xivis; -j
UAiyi- M
^rv-lMk

!

1
i

i ^ e .
Kl̂ UJT.!

1 1 1

1 1

F W C 1 ^
r ^ f tTP i >t

TT-iklFYir-TX^

ft!ne
L!WST

1 1 I

l^ftiT =!

-NlPr^F
1 i 1

M M
1 1 '
I. !
! M l
jitfY- RiGlCo.g

a
J.| , ' l

:JY r s 15 rr^
>IY NSrTrtTG

; F«iJLe-;s,
id 1 1 ! 1
IUI^YL: '
1 ! ' 1

! 1 l ! i !
! i

m'. :
i ! ']

MX- e r e OR
i«rJ. 1
"YI r s "Pji;^
\"YI X Q I K T V \
i ' ! F I L E - S

jiei ! I
jkiieYi.

! 1 | ;

' i 1 1
! | | 1

*4 jqjri
! ! ! I

vidv-ee'CjOiE
F]K2STT-IKJ<V
:!vi r i IFTIR
sivi v F T « sk
"1 F X L ^ - ! ^

:<? '
alui iRt.

1 I
! i
i 1

1 (1
i i

') 1

|T : ~ j -
II , 1

1

EMTTGG'Gb T
3U|T evL

Kfo L^ tST-
! i 1 • 1 1

I I I '
I i !

! ! 1 !
j ! 1 i

h|. ; 1

i l l i
Tjc I ! !

1- / l jSTrt
TftTUSi

1 1 !
1 :

! 1 i ! 1

1 . 1 ;

; 1 i !
! M !
i , [

* • , !

1 1 i

T^bi 1 ' 1

.M -~ |xi m
TAITUiS' i

i , !
1

1

in
i i 1

• 1
1 1 1

h. ! !
t iF.1 ! l

ST- 'N^ IM£

-WA;HCI -
Tf lTqs

| | ! 1

! i h •
1 ;

1 ! ! <

Mi :

1 ' {

i ! ..
...,., ,

! ! 1

i ! i '
1 1

"R!Y 'A ld r t lK
! !

! i i 1

M f t t f G j
1 1 1 1 1

| [

i !
1
1 !
| 1 !

i ! r
I 1 .

i : i 1
rre M !

• • •
M !

•

! : i
i 1

M
1 1 i
! i i i I I M

1 : 1 !

11 M l
1 1 1 1
:*\T\Ab.
M M i

1 1 '

M 1 ' ; 1 1:1
: i i |

1 : • i M l
1 1 1

I 1

|

i '

! M
'! Px*s
1 !
1 | !
1 i 1 !

i M
! 1 1 ! I M
1 I 1

' i l l
1 1
1 i i
1 1 I

i ! 1 !
i i !

j !

i' I i

1 I !

M " I
l l l l i

|

1

1 !
1
1

:

i 1 j
1

; !

'
• 1

1 1
1 !

1 1 1
1 1 1

! i l
1 ! !
i ,
1 1
1 i

I 1
1 1

! | 1
:

1 1 1
1 1

i 1 !

1 1 |
1 1 <

1 I

|r-M<
1 1

.. 1 ._f.
: 1 !
1 j

! !

I
1 !
1 1

1

i 1
—'—1—r

1 j
i 1 !

t

•
11

1

11
111

! i 1 I f

M '
, 11 !
1 i I !

- — 1 — '

l ' i i

1 1 ! j
1 i : |

1 : 1

M i j !
1 1 ' 1 1 i
' 1 i l l

M M11
,n |h

1 i
. ... 1 • ! | 1 !) i

..! 1 ! 1 . 1
1 !

1 M MM
!> ! i M
! " i ' i | : 1 ! •
- M M

1 1 i '

l i , i n
1 1

M II
l : < 1 •
1 _I_I X

_i_l 1 J L
1 1 ; |

i 1 I
1 1

1

' |
i M 1

W\G 1 M '
1 1

\ !
M M
1 Ml

M! !
I • 1 j ;

1 1 1 i

s ' i i i !
1 '

11 i
• —i—1—|—

1 1 : •
' " i
! 1 ! ! 1

: 1

i , i ; j
1 • 1
1 M i .

16 - 75 November 1977

SECTION 16 PDR3056

Sequence 5
(PASE)
1 3
1 1

:

1 1

1 '<

1

t
1 1

1

1

1

1

1

1 i

I

1

1

(SERIAL) "•
4 6 "

o'i!
0|2'

013

0 4|

0'5.

0 61

0 7

0'8|

0 9

1 Oi

1 1'

I'2"

1 3

\ A

15 h

V6

1 7

1 8,

1 9

20. Ij
: I f
• 1 «
1 1

1
1

! :
i i

11

!

1

,

1 !

1
1

1

|
1

1
1

0 l i

0 2

0J3 i

0'4|

0|5i

0 6 !

0 71

0 8 '

0 9 :

1 Of

1 11

1 21

I = 31

1 4;

I i5

1 6

17

1 8

IJ91

2 Oi

A IB C O B O L Sta t e m e n t

8 |I2 16 20 24 28 32 36 40 44 48 52 56 6C

i 11 j i 1
'' I 1 :
1 1
M i l l .

I l l !
1 1

1 ! ,
i h i '

I 1 1

1 1
1 1 :

I ! !
1 1

1 1 1

HGIVEJ-OX
i ! ' 1

- • •! •
iRIeyelrTE-

J M *
1 1 !

t f j \
1 ! '

r F \A
1

rpj !u
I

r p w
; • j

re >
i i

T . 1

e^n

B'FC'o
1 1 ! &ZM

\ i ' 1
1 ! :

r 1
fr ! '
1 \ \ ' : \
l&mtr^L

i i 1 i 1 !
1 ; i 11 ' 1

1 i 1111

' ! • 1

1 1

' M

l i ' 1

1 1
1 1

! ; 1
i 1 1 !

1

I I M
1 ' 1 1 1 1 1

. ! 1

1 1! ! l
I ; !; • !

1 1 1

! i
1 ! • 1
M 11

1 I n

S-c T
1

1
1 i ,

d 1 1
a / 1
H!olv £
t f l ^P
fticice
rF l

1

I ! :
I F IP

1 1

i !
! ! !

X F f
j 1 |
. : 1
1 | i

1

IF i $

1 '

, 1

1 1 '

JTF 9
1

1 1 ,

si-Mi
Mo.
si-

>jfc

^
Mlove
f\-
HjO
s>-

ct
vie
P!H

Mojvie
^-!<ST
Ml^ivie
S i - T i l l
M&.ve

.! I 1

i i

R;])M
XTF,

ol &F
1 [i
1 ! .
1 !

II
-jJtk
VJPM
PIT p

?iekiF
bfc!s>p
^0| |T
ekjFjo
N l ^

1 .

GJcJ -V
t;?'-|c
pjelsl-
peei-
HlojilE
^!oi h-
KKKC
?F(?|-
Piesi-
HoiVllF
Ho,v€"

r^n IT
es!-c
?ET(3-
P'F fl-

R!f?t'-

|MIS!-
DiKftfc

]WSb
UN' N
tols-

oiJe-
•ufe!-
1 1

sfrf«^
w^-

! i
' !

! !
1 1

M ! &

T|-!hJ€
1 ! !
1 !

! 1
1 1
1

0:5 <T
MEMT
es!F!o
QIWI!-
\JGYJ

1 u L
01 & E
tVi-lc
!sd

€!US€
'd 1 ^
01 fa

c!o i(
eJo (
tyldh

|H ?'f
01 ' 6
C!ol (
C|ol i(

•?ls\t
7'ee

0 e:?
d iC;1
OJoi !(
C&i i<

Ulftwh
Vfl[R<

I

• SI Mc
i •

A-M>,«
IOITI =

P-WTY
K/H N

I

.KLOM.
1 •

STjAn
'Mc\k

T>H?n

: 1
1

! i !
1 ' 1

jCTfaG
-•S'u'c

W-b
1 I
1 1 !
1 1

j

"o | Pfe
J e * l 'v
£ : M - C

CJOIQN
VI\IQ|

iTI-Mf
OJlAlKll

nrcflc
1

A:"ft-H
. ^ 'vile
: lri i
3 ^ K
To

fti\>-n

.")! Nik
Z0l N

-3h i V
: - cJc>i

:ZBcp:^=
jT l - iNJAt iE

Isplftjck
• troLi^x

>T != SP.«ICE!^ '
elsli T^C

Isjp'ftC E
' TTJOI CLLX

» IV Mill? t

^ ' !
HTIV

11.1. •
J OfTJ 1= b>!PACL€!s
ei-iwlo r o pWftM
=! S P f t ^ S I ' 1

"E: TTo S,l"ATiT.,
• !=! fefidrlrsi , !
4«|ri T"d

1 |

1
1

>V'$w\r
.wj-y îe
fciix^

! ! 1
; ! i

1 1 '

!

^ I F O ' C M I -

l i iH^C
.cdiJTj
I T H T TJE
^tloejc
•xhj-|T Jc
i l i M ' A ^

.E| !
' 1 1

'VSP'̂ L !
>r viofslc
IQITJ WUjlN
j cfti lMu^

PEi^PO^i
[•YjPicT
) M^t tC! • 1 1 " '
JQT] KiMlh
JoT 'NU!H
CliV Tic

JniSi "Tfd 'P!^R!-
[Api-MViPlsrj". !
L\ \UiiMZt\ir\
'2\S\ 'KJuM^rc
sM !NIQ!T1 :^u!^

k^I]^T^l5
1 1 1 1 !

1 M l
1 1 !
! . 1 !

i '.•',•

dr i iw
i • 1 1

1

! 1 i

1 !
1 1 I

T"|~]
CDO MTt,
!^F jRigc

1 ! i

IRIOSJ •
>| f ^ l o lKJT
^vixRV .1
TNUM!G"tf,T

i 1 i

1 1 i

1 ;

into: ! A
^jRirJ A
^ e i c
rfr OJUK
1 ' 1 •
i ! ftliO'D
jderlc: A
idRrb| 1
I jppgi-t
:Ch dn)

1 I '
1 A'K/h

! | (VlMifi
iiFlKir1 i

i J_
RlSiT- \ik\i€ .

1 [

s 's . 1
! !
! ! 1

i 1
E- !Jo.

1 i

I | i 1
1 i II
.! II 1

1

1

! 1 1 1
1 ! 1 | | 1

I j 1 1 !
Aitim <FY i I !

1 1 1 1 i 1
1 i 1

• i] 1 1 i 1 1 1

1 1

! 1
1

! 1
oelbs jrto ^ Rewd ' .

1 !
dt iTdet iV |
Mil 1 ' cl ' i ! !

i l 1 's

i l | i 1 1
1 ! ! ' 1 !

Miri! 1 i i 1 : i
xiri ! i | : I

T ! I
 ! i

M l ! I '
i l i l I 1 1

win i ! ! 1 i j i
' I 1 M ! II 11

a !f!3>l i M l I I
^FR-'CjOl fl*l^ 1 I
; ! M l !

1 |
1 i

i

1 1 i j 1

^ F l - V
) 64 68 72

r 1 1
1 1

1 1

1 1

i >\
1 »

! 1 i

1 • 1
I | ! 1 II ! 1 I

utjT_ t i l l 1 i !
! i j i l l

M ! ! i M
M l ' 1 trti:::±:
1 1 1 1 1 j
1 1 1 1 ! I J »
1 1 I 1 ,
H " "" 1 I"
Hr r M
!' 1 i
i i !
1 !

1

1 1 u*. 1 j I
1 1
1 i 1
! 1

: 1
I 1 1

; ! 1 . f

j :

I 1 1 I
1 1 1 i J
1 1 !
1 1 !

,1 • 1 1
M l M l M l
1 1 j 1 i

1 : I 1
1 1 I I I ...

REV. 0 16 - 76

file:///Jgyj
file:///UiiMZt/ir/

PDR3056 PROCEDURE DIVISION

jquence
(PA4C) (SEHUL)

I 3 4 6

COBOL Statement R ^ F X
20 24 28 32 36 4 0 44 48 52 56 60 64 68 72

Oil
012 m.

MO kfe
V/iEt

.SE&

M& r X ^ £1
l i f e

Hb.
E & i C a
Eft1- C

d^
â

03 H f e 'TJclfr o TQ 'Ml
ft

iCJ f i Oli
04
0:51 I I

016] 4 1 I

0:7: &
0|8| RlEJAHj inx££.
0:91 W U&L lEMi^U-s^i jibi w ^ n
not bl^ito sm Mg|-M a X
m ftr^p uaM Lilar-;yj|ftH£ 11!
l!2! tiTSiPlM ^LTTBT£ a: 1 I I 1 !

1-31 DUsIp LAIY! iSiixiiUfl w
1'4 mm mt iws. SLT^M ms. is:
15, te!4 PIT (yvlTQ-flgftlft
1'6! S5 c d - T f r - ^ e f t n l ^iohr. u juq |E f i l f r
171 frusPiM I ^ I M J C B M S V T ^ Y

fiofli -Tin gJEftlS-TVPCi
MGAlk

! I

£d. l i b g.'SfVDl-'l R:Cft|Dl-21
2!0l &££i£MEiXlj CT! ON _£&Z

t\m> - 3 fiy EMi
miM&b

-MLXE ria-s
11 I ! ! I

4- i 1 I I I !
1 1

I T
0 1 m W • ^
0'2l HMg j i i k ViftlLLEl rd P^E Akx I !

3a 013 ^ T A ^ r hn-giGCt
0!4i I I Zd.

cm FiXltje OT _TSL fc/CD
J"d ^ l e ^ l - F l l L E l - GflL

UESiS jTHIftK/ ^ M J E ;

SEMi J2L
061 KlOiVj £, IUM! dm it e^ T a ,Lft|Sh1- wtajg ! I ! 1 1

017' 5£G&£rU*i gj^frcfel ELXS CTY J ^ L * t a
I !

T r i f t M liasirbiti ft'njg.
081

Go Tbl gj§ fifth :F]Qk£i G&L
019 REM = &

^ 10I K'QiVje I L ^ I •_!V!ftJL iiea Tb s M E : 1 1

in sfnvierl iggsxadghfe
121 3d Ird [gig

E X L I S X £ ^ _rs_ worn LE2& TQU^ sxryre
mL£ XIJEL- gig

131 MH =^L 1 I I I

114
1 5

I ' !<<£>.

HCMVE Tlg^Qi^l]T

forfeit 'igjgLEdihkM!
N:

FTIL^E

I I

KLSL* J & . VLott disss X H M "RI iKDto
3 Q g.'e.NTKFri-'F- ad*.

17 £!££& i^U
1 i 1

HJOIN/.E1 \ W l - V f t | L DIFS n-oi jEilgar -Nan
1 1 1

l!9i I I .amgit M^e:ciTM^ FIL.PLK^LV J D i Moir LES!> JLH v/i 'Ff,esT mm.
20 flgam -•FJCL E-Cg

iimn Jfc l£ gCTQ EILEL Moqn Leshjkt I I
^ X _ £ ^ H _ d
j - b fTbi f l £ sun.

g£ckbj -0 'Qlo ACt

l&LSgll IftVl: a m .

16 - 77 November 1977

SECTION 16 PDR3056

Sequence j A | B C O B O L S t a t e m e n t <?FT 7
(P *BE) mmALi u |

1 3 4 6 7 8 JI2 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
; ! o|i! seA^-W» d-lqxrr. 1X

o 2j i ! | chirr. I I _! ._ _j_
03 4- i l ! 1 ! 1 1

1 04 4 I H I
0 5 ! 4 I j i ; ! ! • \ \

1 0j6| 4 1 | i 1 , l ! ; i I
! oi7! UIRA0MP'- 1 1 j 1 1] !

oi8! ! | | i PGeFoe^ d i k r - t a re . ! j , : 1 . ! 1
1 o!9| i I j | ^vJE K^kH OP ljkibE'X,FD iTF^T rTD 'o.HAKJOrEl F ¥ I € ' tfo 'PKI MT|-!I T|K ff J
i i|o| ! | ; i BlslPLlfiYJ V^KIT; c\i=j lMfc£xet5 TPST M M l 1 1 | ' M l ! 1

i l ; j 1 ^LO^EI CIl-SJT-tXLC / ItilRECTc^Y-'FTilP. 1 I I I II
i ii2 Mj sYicJp ickvK. ' | i I M I i M l II
! i|3 k ! ! M i 1 l i i i ^ ! |
| 14 4 j ; l ! ! ; ' i !
j I ' M 1 II i 1 , i

! 1 ij6i • F6£H|ArrrtiOP:ohr M i i
1 17 1 | ! ^oiVlf Ispftcdsl-tto kjs-^e-c.c£M M i i 1 1 [
M i s M i t * r ! s k > i J A Y v £ N [T a d i * * • < - - * J A * t £ ' - ' !

M i 9 j j Aldcfeph-I vs-LWslrr-kJA^. ' M II
i I 201 j i brEisjpU/\|S| vElKflrgl̂ FHflstr viftHet'. ! I I !
| | 05 ' 1 i i ftltLlepT UlS-Jickfr. MAHN- ! I ! 1 1 M I
! 1 06 l | j I t ^ lPLA^ ^Pî Teie /^Mefesfc ' M 1 ! 1
l | 07| | | I ^cjc}€PT>s-^|bic:ess.! 1 i 1 I ! l M
I ' os; j 1 , brsipi A\I vEdife|e ci-riy ' . i i

i 1 • i 1 1 " • . . . — L . . . - r • • •

! o.9 ' ! M AlcnFPjT] iws.-,arr!y. | | \ ! j
! ! ioi i j i | M2,!PI|AM XENTE!* ?rtk*it ĴUMftfie1 'L 1 ' i l l M

• is! j i I ft'cJc'dphrj I v^ ' -P^^ - r to l . ! ' , ! 1 | M M l ! |
; K9i I I ! (talpLAk'1 ^Kh-ek srv^E xix'. | M j I | .
M i l ! MdFPWkskVnfr^, 1 1 I 1

1 i;2 j ; sfe|slPLfl|Y| ^NTGJR tei^irtybRV HMfifcYY'. 1 I '
' i:3 | I i A IO^PTI k«,-jwrefTttb. 1 ' j I 1 114 1 1 n 1M i Ml I I

L J _ _ M I x 11 j Mi_M __^ M i i I L L J »i_j i_
i 111 Mi l ; II l ill i M : i M 1 111

REV. 0 16 - 78

PDR3056 PROCEDURE DIVISION

COMPILE SEQUENCE FOR REF2

64R

OK, COBOL REF2 -64R

GO,

0000 ERRORS 0000 WARNINGS (COBOL VER 04)

64V

OK, COBOL REF2 -64V

GO,

ERRORS 0000 WARNINGS (COBOL VER 04)

Print Listing File

OK, SPOOL L<-REF2

16 - 79 November 1977

SECTION 16 PDR3056

LISTING File For Sample Program REF2 Compiled In 64V Mode

REV 14 COBOL
(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
(0019)
(0020)
(0021)
(0022)
(0023)
(0024)
(0025)
(0026)
(0027)
(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(0050)
(0051)
(0052)
(0053)

SOURCE FILE: REF2 09/20/77 11:51

IDENTIFICATION DIVISION.
PROGRAM-ID. REF2.
AUTHOR. PRIME COMPUTER.
INSTALLATION. FRAMINGHAM.
DATA-WRITTEN. SEPTEMBER, 1977.
DATE-COMPILED. SEPTEMBER, 1977.
REMARKS. THIS AREA IS USED TO DESCRIBE THE PROGRAM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
SPECIAL-NAMES. CONSOLE IS TTY.

ASCII IS NATIVE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LIST-FILE ASSIGN TO PRINTER.
SELECT CARD-FILE ASSIGN TO PFMS.
SELECT DIRECTORY-FILE ASSIGN TO PFMS,

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC, RECORD KEY IS PHONE-NO,
ALTERNATE RECORD KEY LAST-NAME
ALTERNATE RECORD KEY STATE
ALTERNATE RECORD KEY BIRTHD
ALTERNATE RECORD KEY FIRST-NAME
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD LIST-FILE, LABEL RECORDS ARE OMITTED.

01 PRINT-LINE, PICTURE X(100).
01 PRINT-LINE1.

02 FILLER PIC X.
02 PRINT-LIN PIC X(99).

FD CARD-FILE, LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'INDAT11.
01 CARD-IMAGE, PICTURE X(80).
01 CARD-D1.

02 DATA-D1 PIC X(64).
02 PHONE-D1 PIC X(8).
02 D2 PIC X(8) .

FD DIRECTORY-FILE, LABEL RECORDS ARE STANDARD, VALUE OF FILE-ID
IS 'INDXFILE'
OWNER IS 'LDAVIS'.

REV. 0 16 - 80

PDR3056 PROCEDURE DIVISION

REV 14 COBOL
(0054)
(0055)
(0056)
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)
(0063)
(0064)
(0065)
(0066)
(0067)
(0068)
(0069)
(0070)
(0071)
(0072)
(0073)
(0074)
(0075)
(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)
(0084)
(0085)
(0086)
(0087)
(0088)
(0089)
(0090)
(0091)
(0092)
(0093)
(0094)
(0095)
(0096)
(0097)
(0098)
(0099)
(0100)
(0101)
(0102)
(0103)
(0104)
(0105)
(0106)
(0107)

SOURCE FILE: REF2 09/20/77 11:51
01 DIRECTORY-RECORD.

02 PHONE-NO PIC X(8).
02 NAME.

03 LAST-NAME PIC X(14).
03 FILLER PIC X.
03 FIRST-NAME PIC X(13).
03 FILLER PIC XX.

02 FILLER, PICTURE X.
02 ADDRESS, PICTURE X(25).
02 FILLER, PICTURE X.
02 CITY,
02 FILLER,
02 STATE,
02 BIRTHD,
02 FILLER,

01 DIR-1.
02 DISPLAY-DIR PIC X(72).
02 FILLER PIC X(28).

01 SOME-D1.
02 Dl PIC X(8).
02 D3 PIC X(64).
02 D4 PIC X(8).
02 FILLER PIC X(20).

WORKING-STORAGE SECTION.

PICTURE X(4).
PICTURE X(3) .
PICTURE XX.
PICTURE 9(6).
PICTURE X(20)

77
77
77
77
77
01

01

PICTURE 9 VALUE 0.
PICTURE X VALUE SPACE.
PICTURE 9 VALUE 0.
PICTURE X(2) VALUE IS SPACE.
PICTURE X VALUE SPACE.

GO-TO-READ
CREATE-UPDATE
GO-TO-NAME
FILE-STATUS
CHAR-1
PERFORM-COUNT1.
02 PERFORM-COUNT PIC 999.
02 PER-CO REDEFINES PERFORM-COUNT

PICTURE X, OCCURS 3 TIMES.
WS-RECORD.

01

02
02
02
02
02
02
02
02
02
02
02

WS-LAST-NAME
FILLER
WS-FIRST-NAME
FILLER
WS-ADDRESS
FILLER
WS-CITY
FILLER
WS-PHONE-NO
WS-STATE
WS-BIRTHD

HEADER.
02
02
02
02
02
02
02
02

FILLER
H0
HI
FILLER
H2
FILLER
H3
FILLER

16 -

PICTURE

PIC X(14).
PIC X.
PIC X(13) .
PIC XXX.
PIC X(25).
PIC X.
PIC X(4).
PIC XXX.
PIC X(8).
PIC XX.
PIC X(6) .

X VALUE SPACE.
PIC X(8) VALUE 'PHONE'.
PICTURE X(4) VALUE IS 'NAME1.
PICTURE X(27) VALUE IS SPACE.
PICTURE X(6) VALUE IS 'STREET'.
PICTURE X(20) VALUE IS SPACE.
PICTURE X(4) VALUE IS 'CITY'.
PICTURE

81

X(3) VALUE IS SPACE.

November 1977

SECTION 16 PDR3056

REV 14 COBOL
(0108)
(0109)
(0110)
(0111)
(0112)
(0113)
(0114)
(0115)
(0116)
(0117)
(0118)
(0119)
(0120)
(0121)
(0122)
(0123)
(0124)
(0125)
(0126)
(0127)
(0128)
(0129)
(0130)
(0131)
(0132)
(0133)
(0134)
(0135)
(0136)
(0137)
(0138)
(0139)
(0140)
(0141)
(0142)
(0143)
(0144)
(0145)
(0146)
(0147)
(0148)
(0149)
(0150)
(0151)
(0152)
(0153)
(0154)
(0155)
(0156)
(0157)
(0158)
(0159)
(0160)
(0161)

SOURCE FILE: REF2 09/20/77 11:51

PROCEDURE DIVISION.
START-PROGRAM.

DISPLAY 'ENTER 1 TO CREATE NEW FILE'.
DISPLAY 'ENTER 2 TO UPDATE OLD FILE'.
ACCEPT CREATE-UPDATE.
IF CREATE-UPDATE = '2'

OPEN OUTPUT LIST-FILE
GO TO UPDATE-ONLY.

CREATE-FILE.
MOVE SPACES TO WS-RECORD.
OPEN INPUT CARD-FILE, OPEN OUTPUT LIST-FILE,

DIRECTORY-FILE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT.
READ CARD-FILE AT END GO TO LIST-DIRECTORY.
MOVE CARD-IMAGE TO PRINT-LINE.
WRITE PRINT-LINE.
MOVE SPACES TO DIR-1.
MOVE DATA-D1 TO D3.
MOVE PHONE-Dl TO Dl.
MOVE D2 TO D4.
WRITE DIRECTORY-RECORD

INVALID KEY DISPLAY FILE-STATUS.
GO TO READ-NEXT.

LIST-DIRECTORY.
CLOSE CARD-FILE, DIRECTORY-FILE.
MOVE 'END OF CREATE FILE' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 3 LINES.

UPDATE-ONLY.
MOVE SPACES TO PRINT-LINE.
DISPLAY 'END TEST ONE'
OPEN I-O DIRECTORY-FILE.
IF CREATE-UPDATE = '2'

GO TO GET-NEXT-INQUIRY.
LIST-DIR.

MOVE LOW-VALUE TO PHONE-NO.
PERFORM LIST THRU LIST-DONE.
MOVE LOW-VALUE TO LAST-NAME.
PERFORM LIST1 THRU LIST-DONE.
MOVE LOW-VALUE TO STATE.
PERFORM LIST2 THRU LIST-DONE.
MOVE ZEROS TO BIRTHD.
PERFORM LIST3 THRU LIST-DONE.
MOVE LOW-VALUE TO FIRST-NAME.
PERFORM LIST4 THRU LIST-DONE.

LIST-DIR-EXIT.
EXIT.

START-PAR.
MOVE 'END OF TEST FOR START VERB' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 3 LINES.
MOVE SPACES TO PRINT-LINE.
DISPLAY 'END OF TEST TWO'.

REV. 0 16 - 82

PDR3056 PROCEDURE DIVISION

REV 14 COBOL
(0162)
(0163)
(0164)
(0165)
(0166)
(0167)
(0168)
(0169)
(0170)
(0171)
(0172)
(0173)
(0174)
(0175)
(0176)
(0177)
(0178)
(0179)
(0180)
(0181)
(0182)
(0183)
(0184)
(0185)
(0186)
(0187)
(0188)
(0189)
(0190)
(0191)
(0192)
(0193)
(0194)
(0195)
(0196)
(0197)
(0198)
(0199)
(0200)
(0201)
(0202)
(0203)
(0204)
(0205)
(0206)
(0207)
(0208)
(0209)
(0210)
(0211)
(0212)
(0213)
(0214)
(0215)

SOURCE FILE: REF2 09/20/77 11:51
GO TO GET-NEXT-INQUIRY.

LIST. START DIRECTORY-FILE KEY IS NOT LESS THAN PHONE-NO.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST1. START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST2. START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST3. START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTHD.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST4. START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME,
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT-DIRECTORY-RECORD.
READ DIRECTORY-FILE NEXT RECORD AT END GO TO

LIST-DONE.
MOVE DIRECTORY-RECORD TO PRINT-LIN.
WRITE PRINT-LINE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST-DONE.
EXIT.

GET-NEXT-INQUIRY.
DISPLAY 'ENTER TRAN TYPE'
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

+ =

/ =
* =

READ FILE SEQ1.
ADD'.
DELETE'.
CHANGE'.
QUIT'.

ACCEPT CHAR-1 FROM TTY.
IF CHAR-1
IF CHAR-1
IF CHAR-1
IF CHAR-1
IF CHAR-1
DISPLAY
DISPLAY

= ' + ' GO TO ADDITION.
GO TO DELETION.
GO TO CHANGE.
GO TO WRAPUP.
GO TO READ-FILE.

'INVALID TRANS TYPE = ' CHAR-1.
'TRY AGAIN'.

= V,

GO TO GET-NEXT-INQUIRY.
NO-SUCH-NAME.

DISPLAY ' NO SUCH RECORD =
GO TO GET-NEXT-INQUIRY.

DISPLAY-DIR.

ADDITION.
DISPLAY 'ENTER DATA RECORD FOR ADD'.
PERFORM FORMAT-INPUT.
PERFORM MOVE-REC.
WRITE DIRECTORY-RECORD INVALID KEY

DISPLAY FILE-STATUS

16 - 83 November 1977

SECTION 16 PDR3056

REV 14 COBOL
(0216)
(0217)
(0218)
(0219)
(0220)
(0221)
(0222)
(0223)
(0224)
(0225)
(0226)
(0227)
(0228)
(0229)
(0230)
(0231)
(0232)
(0233)
(0234)
(0235)
(0236)
(0237)
(0238)
(0239)
(0240)
(0241)
(0242)
(0243)
(0244)
(0245)
(0246)
(0247)
(0248)
(0249)
(0250)
(0251)
(0252)
(0253)
(0254)
(0255)
(0256)
(0257)
(0258)
(0259)
(0260)
(0261)
(0262)
(0263)
(0264)
(0265)
(0266)
(0267)
(0268)
(0269)

SOURCE FILE: REF2 09/20/77 11:51
DISPLAY DISPLAY-DIR.

GO TO GET-NEXT-INQUIRY.

DELETION.
DISPLAY 'ENTER PHONE NUMBER TO BE DELETED'.
ACCEPT PHONE-NO FROM TTY.
READ DIRECTORY-FILE INVALID KEY GO TO

NO-SUCH-NAME.
DELETE DIRECTORY-FILE RECORD INVALID KEY GO TO

NO-SUCH-NAME.
GO TO GET-NEXT-INQUIRY.

CHANGE.
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

'ENTER KEY TO BE
'LAST-NAME = 1'
'STATE = 2'
'BIRTHD = 3'
'FIRST-NAME = 4'

ACCEPT GO-TO-NAME.
GO TO READ-ALTl READ-ALT2 READ-ALT3 READ-ALT4

DEPENDING ON GO-TO-NAME.
DISPLAY 'WRONG TYPE ENTERED TRY AGAIN'.
GO TO GET-NEXT-INQUIRY.

READ-ALTl.
DISPLAY 'ENTER LAST NAME'.
ACCEPT WS-LAST-NAME.
MOVE SPACES TO DIRECTORY-RECORD.
MOVE WS-LAST-NAME TO LAST-NAME.
READ DIRECTORY-FILE KEY IS LAST-NAME

INVALID KEY DISPLAY 'LAST-NAME = '
DISPLAY 'STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.

LAST-NAME

READ-ALT2.
DISPLAY 'ENTER STATE '.
ACCEPT WS-STATE.
MOVE SPACES TO DIRECTORY-RECORD.
MOVE WS-STATE TO STATE.
READ DIRECTORY-FILE KEY IS STATE

INVALID KEY DISPLAY, 'STATE = '
DISPLAY 'STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.

READ-ALT3.
DISPLAY 'ENTER BIRTHDAY'.
ACCEPT WS-BIRTHD.
MOVE SPACES TO DIRECTORY-RECORD.

STATE

REV. 0 16 - 84

PDR3056 PROCEDURE DIVISION

REV 14 COBOL
(0270)
(0271)
(0272)
(0273)
(0274)
(0275)
(0276)
(0277)
(0278)
(0279)
(0280)
(0281)
(0282)
(0283)
(0284)
(0285)
(0286)
(0287)
(0288)
(0289)
(0290)
(0291)
(0292)
(0293)
(0294)
(0295)
(0296)
(0297)
(0298)
(0299)
(0300)
(0301)
(0302)
(0303)
(0304)
(0305)
(0306)
(0307)
(0308)
(0309)
(0310)
(0311)
(0312)
(0313)
(0314)
(0315)
(0316)
(0317)
(0318)
(0319)
(0320)
(0321)
(0322)
(0323)

SOURCE FILE: REF2 09/20/77 11:51
MOVE WS-BIRTHD TO BIRTHD.
READ DIRECTORY-FILE KEY IS BIRTHD

INVALID KEY DISPLAY 'BIRTHD = ' BIRTHD
DISPLAY 'STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.

READ-ALT4.
DISPLAY 'ENTER FIRST-NAME'.
ACCEPT WS-FIRST-NAME.
MOVE SPACES TO DIRECTORY-RECORD.
MOVE WS-FIRST-NAME TO FIRST-NAME.
READ DIRECTORY-FILE KEY IS FIRST-NAME

INVALID KEY DISPLAY 'FIRST-NAME =
DISPLAY 'STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

FIRST-NAME

CHANGE-RECORD.
DISPLAY DISPLAY-DIR.
PERFORM FORMAT-INPUT.

MOVE-REC.
IF WS-RECORD = SPACES

DISPLAY 'NO DATA ENTERED TRY AGAIN'
GO TO GET-NEXT-INQUIRY.

IF WS-LAST-NAME NOT = SPACES
MOVE WS-LAST-NAME TO LAST-NAME.

IF WS-FIRST-NAME NOT = SPACES
MOVE WS-FIRST-NAME TO FIRST-NAME.

IF WS-ADDRESS NOT = SPACES
MOVE WS-ADDRESS TO ADDRESS.

IF WS-CITY NOT = SPACES
MOVE WS-CITY TO CITY.

IF WS-PHONE-NO NOT = SPACES
MOVE WS-PHONE-NO TO PHONE-NO.

IF WS-STATE NOT = SPACES
MOVE WS-STATE TO STATE.

IF WS-BIRTHD NOT = SPACES
MOVE WS-BIRTHD TO BIRTHD.

MOVE-EXIT.
EXIT.

REWRITE-RECORD.
REWRITE DIRECTORY-RECORD INVALID KEY

GO TO NO-SUCH-NAME.
GO TO GET-NEXT-INQUIRY.

READ-FILE.

16 - 85 November 1977

SECTION 16 PDR3056

REV 14 COBOL
(0324)
(0325)
(0326)
(0327)
(0328)
(0329)
(0330)
(0331)
(0332)
(0333)
(0334)
(0335)
(0336)
(0337)
(0338)
(0339)
(0340)
(0341)
(0342)
(0343)
(0344)
(0345)
(0346)
(0347)
(0348)
(0349)
(0350)
(0351)
(0352)
(0353)
(0354)
(0355)
(0356)
(0357)
(0358)
(0359)
(0360)
(0361)
(0362)
(0363)
(0364)
(0365)
(0366)
(0367)
(0368)
(0369)
(0370)
(0371)
(0372)
(0373)
(0374)
(0375)
(0376)
(0377)

SOURCE FILE: REF2 09/20/77 11:51
MOVE ZEROS TO PERFORM-COUNT.
DISPLAY 'ENTER NUMBER OF RECORDS TO BE READ'
ACCEPT PERFORM-COUNT.
IF PERFORM-COUNT = ZEROS

DISPLAY 'NO RECORD COUNT ENTERED'
GO TO GET-NEXT-INOUIRY.

IF PERFORM-COUNT1 NOT NUMERIC
NEXT SENTENCE

ELSE
GO TO READ-TYPE.

IF PER-CO (1) NOT NUMERIC AND
PER-CO (2) NOT NUMERIC AND
PER-CO (3) NOT NUMERIC
MOVE 002 TO PERFORM-COUNT
GO TO READ-TYPE.

IF PER-CO (1) NUMERIC AND
PER-CO (2) NOT NUMERIC AND
PER-CO (3) NOT NUMERIC
MOVE PER-CO (1) TO PER-CO (3)
MOVE '0' TO PER-CO (1) PER-CO (2)
GO TO READ-TYPE.

IF PER-CO (1) NUMERIC AND
PER-CO (2) NUMERIC AND
PER-CO (3) NOT NUMERIC
MOVE PER-CO (2) TO PER-CO (3)
MOVE PER-CO (1) TO PER-CO (2)
MOVE '0' TO PER-CO (1).

READ-TYPE.
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

'ENTER KEY TO BE READ'

READ-1.

READ-2.

'PHONE-NO = 1'.
'LAST-NAME =2'.
'STATE =3'.
'BIRTHD =4'.
'FIRST-NAME =5'.

ACCEPT GO-TO-READ.
IF GO-TO-READ NOT NUMERIC

DISPLAY 'INVALID KEY TRY AGAIN'
GO TO READ-TYPE.

GO TO READ-1 READ-2 READ-3 READ-4 READ-5
DEPENDING ON GO-TO-READ.

MOVE LOW-VALUES TO PHONE-NO.
START DIRECTORY-FILE KEY I S NOT LESS THAN PHONE-NO.
GO TO READ-FILE-GO.

MOVE LOW-VALUES TO LAST-NAME.
START DIRECTORY-FILE KEY I S NOT LESS THAN LAST-NAME.
GO TO READ-FILE-GO.

REV. 0 16 86

PDR3056 PROCEDURE DIVISION

REV 14 COBOL
(0378)
(0379)
(0380)
(0381)
(0382)
(0383)
(0384)
(0385)
(0386)
(0387)
(0388)
(0389)
(0390)
(0391)
(0392)
(0393)
(0394)
(0395)
(0396)
(0397)
(0398)
(0399)
(0400)
(0401)
(0402)
(0403)
(0404)
(0405)
(0406)
(0407)
(0408)
(0409)
(0410)
(0411)
(0412)
(0413)
(0414)
(0415)
(0416)
(0417)
(0418)
(0419)
(0420)
(0421)
(0422)
(0423)
(0424)

SOURCE FILE:
READ-3.

REF2 09/20/77 11:51

READ-4

READ-5.

MOVE LOW-VALUES TO STATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.
GO TO READ-FILE-GO.

MOVE ZEROS TO BIRTHD.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTHD.
GO TO READ-FILE-GO.

MOVE LOW-VALUES TO FIRST-NAME.
START DIRECTORY-FILE KEY I S NOT LESS THAN FIRST-NAME.

READ-FILE-GO.
READ DIRECTORY-FILE NEXT RECORD

AT END MOVE ZEROS TO PERFORM-COUNT
GO TO READ-FILE-EXIT.

DISPLAY DISPLAY-DIR.
READ-FILE-EXIT.

EXIT.

WRAPUP.
PERFORM LIST-DIR.
MOVE 'END OF INDEXED TEST TO CHANGE FILE ' TO PRINT-LINE.
DISPLAY 'END OF INDEXED T E S T ' .
CLOSE LIST-FILE, DIRECTORY-FILE.
STOP RUN.

FORMAT-INPUT.
MOVE SPACES TO WS-RECORD.
DISPLAY 'ENTER LAST NAME'.
ACCEPT WS-LAST-NAME.
DISPLAY 'ENTER FIRST NAME1.
ACCEPT WS-FIRST-NAME.
DISPLAY 'ENTER ADDRESS '.
ACCEPT WS-ADDRESS.
DISPLAY 'ENTER CITY '.
ACCEPT WS-CITY.
DISPLAY 'ENTER PHONE NUMBER '.
ACCEPT WS-PHONE-NO.
DISPLAY 'ENTER STATE XX'.
ACCEPT WS-STATE.
DISPLAY 'ENTER BIRTHDAY MMDDYY'
ACCEPT WS-BIRTHD.

0000 ERRORS 0000 WARNINGS (COBOL VER 04)

16 - 87 November 1977

SECTION 16 PDR3056

LOAD SEQUENCE FOR REF2

64R

OK, HILOAD

$

$

$

$

MO D64R

CO 120000

LO B«-REF2

AU 20

$

$

LC

$

LI

LI

SAVE

COBKID

i *REF2

$

64V/SEG

OK

GO

$

$

$

QUIT

, SEG

>

VLOAD #REF2

LO B<-REF2

LIB

LIB

VCOBLB

VKDALB

$

TT

$

LI

SAVE

QUIT

set mode

move common

load COBOL MIDAS library

load FORTRAN library

load complete

save memory image

return to PRIMOS

load SEG COBOL library

load SEG, COBOL MIDAS library

load the FORTRAN library

load complete prompt

the memory image is saved as #REF2

return to PRIMOS

REV. 0 16 88

PDR3056 PROCEDURE DIVISION

CREATK SEQUENCE FOR REF2

The following represents the minimum dialogue to create the MIDAS template
for sample program REF2 (underlining indicates user response):

OK, CREATK

MINIMUM OPTIONS? YES

FILENAME? PIRECTORY-FILE

NEW FILE? YES

DIRECT ACCESS? NO

KEY TYPE: B

KEY SIZE=: B 64

DATA SIZE=: 50

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES-

KEY TYPE: B

KEY SIZE=: B 112

USER DATA SIZE=: 0

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: B 16

USER DATA SIZE=: _0

INDEX NO.? 3

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: B 48

The name of the file in the COBOL
program which is to be indexed.

Key type is Binary

Eight times the characters in the
primary key, PHONE-NO.

16 89 November 1977

SECTION 16 PDR3056

USER DATA SIZE=: 0

INDEX NO.? 4

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: 104

USER DATA SIZE=: 0

INDEX NO? (CR)

REV. 0 1 6 - 9 0

PDR3056 PROCEDURE DIVISION

EXECUTE SEQUENCE FOR REF2

64R

OK, R *REF2

ENTER FILENAME AND UNIT

>INDAT1=INDAT1

>INDXFILE=DIRECTORY-FILE

64V

>/

OK, SEG #REF2

ENTER FILENAME AND UNIT

>INDAT1=INDAT1

>INDXFILE=DIRECTORY-FILE

>/

16 - 91 November 1977

r

F U N C T I O N A L P R O C E S S I N G M O D U L E S

REFERENCE

PDR3056 INTER-PROGRAM COMMUNICATION

SECTION 17

INTER-PROGRAM COMMUNICATION

DEFINITION

Inter-Program Communication provides a facility by which a program can
communicate with one or more programs. Control may be transferred from
one program to another within a run unit, and both programs may have
access to the same data items.

Inter-module communication of data is made possible through the use of
the LINKAGE SECTION of the Data Division, and by the CALL statement and
USING list appendage to the Procedure Division header of a subprogram
module.

17 - 1 November 1977

SECTION 17 PDR3056

LINKAGE SECTION

The LINKAGE SECTION in a program is meaningful if, and only if, the
object program is to function under the control of a CALL statement,
and the CALL statement in the calling program contains a USING phrase.

The LINKAGE SECTION describes data made available in memory from another
program module, but which is to be referred to in both the calling and
the called program.

No space is allocated in the program for data items referenced by data-
names in the Linkage Section of that program. Procedure Division re
ferences to these items are resolved at load time, equating the
references in the called program to the location used in the calling
program by passing address parameters. Thus, Record Description entries
in the LINKAGE SECTION provide data-names by which data-areas reserved
in memory by other programs may be referenced.

Data items defined in the LINKAGE SECTION of the called program may be
referenced in the Procedure Division of that called program only if:
they are specified as operands of the USING phrase of the Procedure
Division header or are subordinate to such operands, and the object
program is under the control of a CALL statement which specifies a
USING phrase (see the example at the close of this section).

The structure of the LINKAGE SECTION is that described for the WORKING-
STORAGE SECTION.

Any Record Description clause may be used to describe items in the
LINKAGE SECTION except that:

1. The VALUE clause may not be specified for other than level 88
items;

2. Data-names used in the LINKAGE SECTION must be unique (may not
be qualified);

3. Level 01 and 77 items must start on a computer word boundary.
The programmer must ensure proper alignment between an argument
(pointer to data) in a CALL statement and the corresponding data-
name in a USING list on a subprogram Procedure header;

4. Items in the LINKAGE SECTION which bear no hierarchy re
lationship to one another need not be grouped into records. These
are classified and defined as noncontiguous elementary items.
They may be defined in separate level 77 entries.

Such Data Description entries must include a level-number 77, a
data-name, and a PICTURE clause or the USAGE IS INDEX clause.

REV. 0 17

PDR3056 INTER-PROGRAM COMMUNICATION

PROCEDURE DIVISION

In addition to LINKAGE SECTION entries, inter-program communication re
quires certain Procedure Division entries.

Using List Appendage to Procedure Header

The Procedure Division header of a CALLable subprogram is written as:

PROCEDURE DIVISION [USING data-name...]

where each of the data-name operands is an entry in the LINKAGE SECTION
of the subprogram, having level 77 or 01. Addresses are passed from
an external CALL in one-to-one correspondence to the operands in the
USING list of the Procedure header so that data in the calling program
may be manipulated in the subprogram.

CALL Statement

The CALL statement format is:

CALL 'literal' [USING data-name-1 data-name-n]

where literal is a subprogram name defined as the PROGRAM-ID of a sep
arately compiled program and must be enclosed in quote marks. (The
relationship of literal and PROGRAM-ID is illustrated in the example
at the end of this section.)

Data-name(s) in the USING list are made available to the called sub
program by passing addresses to the subprogram; these addresses are
assigned to the LINKAGE SECTION items declared in the USING list of
that subprogram. Therefore, the number of data-names specified in
matching. CALL and Procedure Division USING lists must be identical.
At this time, data-name-n must not exceed 15.

NOTE: Correspondence between caller and callee lists are positional, not
by identical spelling of names. For additional information, see CALL
statement in the PROCEDURE DIVISION SECTION.

EXIT PROGRAM Statement

The EXIT PROGRAM statement, appearing in a called subprogram, causes
control to be returned to the next executable statement after a CALL
in the calling program. This statement must be a paragraph by itself.

ENTER Statement

An ENTER statement is classified as a compiler-directing statement; it
acts as a modifier to a subsequent CALL statement.

A subprogram which is called may have been written in COBOL, FORTRAN,
or ASSEMBLER language. The ENTER statement provides the means to
identify the language in which a subprogram is written.

1 7 - 3 November 1977

SECTION 17 PDR3056

The general format is:

/"COBOL "\
ENTER 1 ASSEMBLER J

ENTER ASSEMBLER tells the compiler that the ensuing callee is not a
COBOL subprogram.

ENTER COBOL tells the compiler that the ensuing callee is a COBOL
subprogram.

ENTER COBOL may also be used following a CALL statement. This tradi
tional usage is optional; after any CALL statement, ENTER COBOL is
assumed.

REV. 0 1 7 - 4

PDR3056 INTER-PROGRAM COMMUNICATION

EXAMPLE:

Filename = CALLER

IDENTIFICATION DIVISION.
PROGRAM-ID. CALL1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-ITEM PICTURE 9(5).
PROCEDURE DIVISION.
FIRST-PARAGRAPH.

CALL 'CALLED!'
STOP RUN.

USING WS-ITEM.

Parameter being passed

The name in quotations must be
the Program-Id-name, not the
file-name.

Filename = CALLED

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLED!.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-TEST PICTURE 9(5).
LINKAGE SECTION.
01 WS-ITEM PICTURE 9(5).
*WS-ITEM MUST BE DESCRIBED IN THE SAME MANNER
*IN BOTH THE CALLING AND THE CALLED PROGRAM.
*ONLY 01 AND 77 LEVEL ITEMS MAY BE CODED HERE.
PROCEDURE DIVISION USING WS-ITEM.
FIRST-PARAGRAPH.

MOVE WS-TEST TO WS-ITEM.
EXIT PROGRAM.

17 November 1977

PDR3056 TABLE HANDLING

SECTION 18

TABLE HANDLING

DEFINITION

Table Handling provides a capability for defining tables of contiguous
data items and accessing those items relative to their position in
the table. The OCCURS clause is the language facility provided for
specifying how many times an item is to be repeated. Each item may
be identified through use of a subscript or an index.

18 - 1 November 1977

SECTION 18 PDR3056

DATA DIVISION

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated
data items. Further, it supplies information required for the applica
tion of subscripts or indices. The OCCURS clause cannot be used on a
level 77 or 88.

Data Description clauses associated with an item whose description
includes an OCCURS clause apply to each repetition of the item being
described. When OCCURS is used, the data-name which is the defining
name of the entry must be subscripted (or if the INDEXED BY phrase is
specified, must be indexed) whenever it appears in the Procedure
Division. If the data-nama applies to a group item, all data-names
belonging to the group must be subscripted (or indexed) whenever they
are used.

The OCCURS clause format is:

[OCCURS integer TIMES [INDEXED BY index-name-1

[index-name-2...]]]

INDEXED BY

The format of the INDEXED BY clause appears directly above. Index-name
is not declared in the usual method of: INDEXED BY.

The format of the INDEXED BY phrase is:

[INDEXED BY index-name-1 [index-name-2...]]

when used, the INDEXED BY phrase is appended to the OCCURS clause. It
is required if the subject of this entry, or one subordinate to this
entry, is to be referred to by indexing. The index-name identified by
this phrase is not defined elsewhere; allocation and format are defined
by the compiler.

For this reason, index-name is not declared in the usual method of:
level number, name, Data Description clauses. Rather, the declaration
is implicit in the appearance of an "INDEXED BY index-name" appendage
to an OCCURS clause.

Index-name is equivalent to an index-item; it must be uniquely named.
This compiler assigns a full word for each index-name defined.

An index item may only be referred to by a SET statement, a CALL state
ment USING list, a Procedure header USING list, as the variation item
in PERFORM VARYING, by a SEARCH statement, or in a relational condition.
In all cases, the process is equivalent to dealing with a binary word
integer subscript. A maximum of 3 indexes may be used on any given
data-name.

REV. 0 18

PDR3056 TABLE HANDLING

Relative indexing may be specified wherever indexing can be specified.
In this instance, index-name is followed by one of the operators + or -,
followed by an unsigned, integer numeric literal, all delimited by the
balanced pair of separators left parenthesis and right parenthesis.

The occurrence number resulting from relative indexing is determined by
incrementing or decrementing by the value of the literal, the occur
rence number represented by the value of the index.

When a statement is executed which refers to an indexed table element,
the value in the associated index must neither be less than zero, nor
greater than the highest occurrence number of an element in the table.
This restriction applies equally to indexing and relative indexing.

The general format for indexing is:

(data-name
condition-name

\ r Jindex-name-1 [{±} l i t e r a l -2] l
^ l i t e r a l -1

. /index-name-2 [{±} l i tera l -4] I
\ l i t e r a l - 3 J ...)

(index-name-3
^literal-5

[{±> literal-6] } ...)

18 November 1977

file:///literal-3

SECTION 18 PDR3056

Subscripting

When an OCCURS clause is specified for an item in the Data Division,
that item must be subscripted or indexed whenever it is used.

Subscripting provides the facility for referring to those data items
in a table or list which have not been assigned individual data-names.

The format is:

data-name (subscript-1 [,subscript-2 [,subscript-3]])

The subscript can be represented either by a positive numeric literal
or by a data-name. Such a data-name must be a numeric, elementary item
which represents an integer. The data-name as subscript may be quali
fied but not itself subscripted.

The subscript data-name may be signed, but the value must be positive.
The lowest value which the subscript can contain is 1 (this would point
to the first occurrence of the data within a table.) Thus, the sub
script contains the numeric 'OCCURS' number within a table; its value
must not exceed the 'OCCURS' integer for the table with which it is
associated. The subscript can be used on any table.

EXAMPLE:

01 ARRAY
03 ELEMENT, OCCURS 3, PICTURE S9(4), SIGN TRAILING SEPARATE.

The example above would be allocated storage as shown below:

ARRAY consisting of fifteen
characters; each item has 4
digits and a separate sign.

ELEMENT

ELEMENT

ELEMENT

(1)

(2)

(3)

A data-name may not be subscripted if it is being used for any of the
following functions:

1. When it is being used as a subscript;

2. When it appears as the defining name of a Data Description
entry;

3. When it appears as data-name-2 in a REDEFINES clause.

REV. 0 18

PDR3056 TABLE HANDLING

A maximum of three (3) subscripts can be used on any given data item.
Multiple subscripts are separated by a comma.

A subscript value is changed in the Procedure Division via MOVE, ADD,
or SUBTRACT verbs. The SET verb cannot be used on a subscript data-
name.

PROCEDURE DIVISION

SET Statement

The SET statement permits the manipulation of index-names and index
items, for table-handling purposes. There are two formats:

FORMAT 1:

_ _ /index-name-
S E T \data •name-l j ••• TO

(index-name-3
TO < data-name-3

I integer-1

FORMAT 2:

findex-name-4
b t l \jiata-name-4 } UP

DOWN BY

index-name-6
data-name-6
integer-2

Format 1 is equivalent to moving the value in index-name-3, data-name-3,
or integer-1 to multiple receiving fields written immediately after the
SET verb.

Format 2 is equivalent to reduction (DOWN), or increase (UP), applied
to each of the quantities written immediately after the SET verb. The
amount of the reduction or increase is specified by a name or value
immediately following the word BY.

An index-name should only apply to the OCCURS which define it.

SEARCH statement

The SEARCH statement is used to search a table for a table element
which satisfies the specified condition. The associated index-name is
adjusted to indicate that table element.

18 November 1977

file:///data
file:///jiata-name-4

SECTION 18 PDR 3056

The format is:

a3ARCH data-name-1 [VARYING { £ £ £ £ £ } 1

[= MM conditxon-1 fers^N^t9nent"2}

[;SfiI«-diti«.2 fej^"-5)

A SEARCH statement enables a serial type of search operation, start
ing with the current index setting.

Data-name-1 must not be subscripted or indexed, but its description
must contain an OCCURS clause and an INDEXED BY clause. Data-name-2,
when specified, must be described as USAGE IS INDEX, or as a numeric
elementary item without any positions to the right of the assumed
decimal point.

A complete discussion of the SEARCH verb is presented in Section 16,
Procedure Division.

REV. 0 1 8 - 6

PDR3056 INDEXED SEQUENTIAL FILES

SECTION 19

INDEXED SEQUENTIAL FILES

DEFINITION

The indexed sequential system incorporates the concept of accessing data
selectively in a sequentially structured file. (Only the index which
points to the data is sequential.) The data base is created in ascending
sequential order on a direct access device, and concurrently a hierarchy
of indices is constructed. The indices can be used to directly locate a
given record within the file.

The sequence of the indices relating to a record depends on a field within
the data records which is specified by the programmer in a RECORD KEY
clause. The record key(s) are the elements which identify each record in
a file.

19 - 1 November 1977

SECTION 19 PDR3056

F I L E C O N T R O L

FORMAT:

SELECT file-name ASSIGN TO PFMS

ORGANIZATION IS INDEXED

[ACCESS MODE IS <
SEQUENTIAL
RANDOM }]
DYNAMIC

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]...

[FILE STATUS IS data-name-3]

GENERAL RULES:

1. SELECT file-name

The SELECT clause specifies the name of the indexed sequential file,
Refer to Environment Division for rules.

2. ORGANIZATION IS INDEXED

This clause specifies that the file named in the SELECT statement
contains data organized by indices, and that it is to be processed
by the Multiple Index Data Access System, MIDAS.

fsEQUENTIAL
<F 3. [ACCESS MODE IS < RANDOM
DYNAMIC

The ACCESS MODE clause specifies how an indexed file is written or
retrieved.

A. SEQUENTIAL

If access mode is not specified, the default is sequential.
This access mode specifies that records will be written or
retrieved sequentially. When a WRITE statement is used, the
record must be submitted in ascending sequence by RECORD KEY
value. A READ statement retrieves the records sequentially.

REV. 0 19

PDR3056 INDEXED SEQUENTIAL FILES

B. RANDOM

When RANDOM is specified, the records are to be written or
retrieved randomly, based on the value placed in the RECORD
KEY field prior to a READ or WRITE. The complete RECORD KEY
value must be placed in data-name-n, prior to a READ, otherwise
the record will not be found. Random mode precludes a
sequential READ or WRITE.

C. DYNAMIC

When DYNAMIC access method is specified, a program can read
or write randomly or sequentially.

4. RECORD KEY IS data-name-1

The RECORD KEY clause specifies the data item within each record which
is used for the primary index.

A. Data-name-1 must be defined in the Record Description FD entry.

B. Data-name-1 must be the first entry in the Record Description.
Multiple Record Descriptions must have the same corresponding
data description for the record key.

C. Data-name-1 must not be specified with an OCCURS clause, or
be contained within a group affected by an OCCURS clause.

D. Data-name-1 must not be specified with a P character in its
PICTURE clause, with a separator sign (/).

E. Data-name-1 must have the same description and relative location
as when the file was created.

F. Data-name-1 cannot exceed 32 characters.

G. The value contained within data-name-1 must be unique, duplicates
are invalid.

5. [ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

This key field allows secondary indices. There may be up to 5 additional
key fields.

See Rules C through F under RECORD KEY.

1 9 - 3 November 1977

SECTION 19 PDR3056

Specification of WITH DUPLICATES for an ALTERNATE RECORD allows keys
containing the same value to be placed in the file. WITH DUPLICATES
must be specified when the file template is created; it cannot be
changed at the program level.

6. [FILE STATUS IS data-name-3]

The FILE STATUS is a two-character (one word) unsigned field described
in the Working-Storage section. After each access to the operating
system, a status code is placed in this field. For a successful read
or write, etc., the status code contains 00. If the INVALID KEY or
DECLARATIVES were involved, the error status code is returned. The
programmer then can determine what action to take. Refer to the
following table for error codes:

REV. 0 1 9 - 4

PDR3056 INDEXED SEQUENTIAL FILES

FILE
ORGANIZATION

Indexed 0

1

2

3

9

STATUS KEY 1

- Successful completion

- End of filea

- Invalid key

- Permanent 1-0 error*5

- Implementor - defined

0

0
1

3

4

0

0
1

2

3

5

6

9

STATUS KEY 2

- No further information

- No further information

- Sequence errorx

- No record founde

- Boundary violation0

- No further information

- Locked record^

- Unlocked record"

- Value in key already in the database and
duplicates not specified when CREATK
was run.d

- Indices specified in the program do not
match indices used when CREATK was run.

- Index size does not size used on
creation.

- The disk is full.

- System error, call analyst.

aEnd of file. A READ statement was unsuccessful because there was no logical next
record in the file.

"Permanent 1-0 error. An 1-0 statement was unsuccessful because of an 1-0 error,
such as data check, parity error, or transmission error. For sequential
file only, a boundary violation.

cBoundary violation. Attempt was made to read or write beyond the externally defined
boundaries of a file. Disk space full.

^Duplicate key. Attempt was made to write (or, for an indexed file, rewrite) a
record which would create a duplicate key in the file. For an indexed
file, when file status is 92, a duplicate key condition exists if the
key value of the current key of reference is equal to the value of that
same key in the next record within the current key of reference.

^ o record found. Attempt was made to access a record, identified by key, but the
record does not exist in the file.

fSequence error. For a relative file: trying to write beyond the predefined
boundaries of the file. For an indexed file: trying to write a record
containing a key which already exists on the file.

^Locked record. The record is locked and being updated by another program.

"Unlocked record. The record is not locked by a READ prior to a REWRITE.

Table 19-1. File Status Key Definitions, Indexed Sequential Files

19 November 1977

SECTION 19 PDR3056

PROCEDURE DIVISION

The COBOL statements listed in this section apply to their application
in Indexed file processing.

A complete description of all COBOL verbs, their functions, formats,
and rules, is provided in Section 16, PROCEDURE DIVISION.

The INVALID KEY clause may be written for Indexed Files in the START,
READ, WRITE, REWRITE or DELETE statements. Its format is:

[INVALID KEY imperative-statement]

The INVALID KEY clause is executed if there is an error status code condi
tion, in which case control is transferred to imperative-statement. If
this clause is not present, control is passed to the DECLARATIVE section
for the corresponding file. If neither is specified, the program will
abort during execution. The result for the INVALID condition is returned
via the ERROR STATUS code. See Table 19-1.

REV. 0 1 9 - 6

PDR3056 INDEXED SEQUENTIAL.FILES

C L O S E STATEMENT

FORMAT:

CLOSE index-file-name.

GENERAL RULE:

This is the only option possible for an indexed file.

19 _ 7 November 1977

SECTION 19 PDR3056

D E L E T E STATEMENT

FORMAT:

DELETE file-name [INVALID KEY imperative-statement]

GENERAL RULES:

1. The DELETE statement logically removes a data record from the
indexed file together with all the indices.

2. In sequential access, the record to be deleted must have been
successfully read before a delete can be executed. The primary
RECORD KEY cannot be changed between the READ and DELETE statement,
otherwise the INVALID KEY clause will be activated.

3. RANDOM and DYNAMIC access modes only need to place the value of
the record to be deleted in the RECORD KEY field. If that record
does not exist in the file, the INVALID KEY statement is executed
and the ERROR STATUS field will contain a value of 23.

REV. 0 19

PDR3056 INDEXED SEQUENTIAL FILES

O P E N STATEMENT

FORMAT:

OPEN I
1-0
INPUT
OUTPUT

> index-file-name-1. >. • •

GENERAL RULES:

1. A file opened as INPUT can only be accessed in a READ statement.

2. A file opened as OUTPUT can only be accessed in a WRITE statement.

3. A file opened as 1-0 can be either read or written with lock
record.

4. The table below specifies the types of OPEN statements which are
permissible with the different ACCESS modes.

ACCESS
NODE IS

SEQUENTIAL

RANDOM

DYNAMIC

Procedure
Statement

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

Open Option :

Input

X

X

X

X

X

Output

X

X

X

In Effect

1-0

X

X
X
X

X
X
X

X

X
X
X
X
X

Table 19-2. OPEN Statements vs. Access Mode, Indexed 1-0

19 November 1977

SECTION 19 PDR3056

R E A D STATEMENT

FORMAT 1: (SEQUENTIAL or DYNAMIC)

READ file-name [NEXT RECORD] [INTO data-name-1]

[AT END imperative-statement] .

FORMAT 2: (SEQUENTIAL, RANDOM or DYNAMIC)

READ filename [INTO data-name-1]

[KEY IS data-name-2]
[INVALID KEY imperative-statement].

GENERAL RULES:

1. Format 1, Option 1 (SEQUENTIAL ACCESS ONLY):

READ file-name [INTO data-name-1] [AT END imperative-statement].

A file is read sequentially based on the primary index (RECORD KEY).
If one of the secondary index sequences is to be used, the index must
be established via a Format 2, Option 2 READ statement. Thereafter,
the file can be read with a Format 1, Option 1 format. If the INTO
clause is used, the data record is automatically moved into data-name-1.
When AT END is specified, control is passed when the complete file has
been read.

2. Format 1, Option 2 (DYNAMIC and SEQUENTIAL ACCESS):

READ file-name [NEXT RECORD] [INTO data-name-1]

[AT END imperative-statement . . .] .

A. FOR DYNAMIC ACCESS:

This option allows the programmer to change from a random mode
to sequential reading with the NEXT record clause. The INTO
clause automatically moves the data-record into data-name-1.
The AT END clause transfers control at the end of the file.

If the NEXT RECORD option is not specified, the value of the
record to be retrieved must be placed in the RECORD KEY data-
name.

REV. 0 19 - 10

PDR3056 INDEXED SEQUENTIAL FILES

B. FOR SEQUENTIAL ACCESS:

The NEXT RECORD is not required with sequential access; it
is automatically accessed.

3. Format 2, Option 1:

READ file-name [INTO data-name-1]

[INVALID KEY imperative-statement].

A. FOR SEQUENTIAL ACCESS:

The format will read the file sequentially based on the spe
cified index, or be defaulted to the primary index. The INTO
moves data into data-name-1. INVALID KEY transfers control if
any of the status codes listed in Table 19-1 are encountered.

B. FOR DYNAMIC and RANDOM ACCESS:

The format will retrieve data based on the value contained in
data-name (primary or secondary index). If the record is not
found or, any other error status is encountered, control is
passed to the INVALID KEY (refer to Table 19-1). The
INTO clause moves data to data-name-1.

4. Format 2, Option 2:

READ filename [INTO data-name-1]

[KEY IS data-name-2]
[INVALID KEY imperative-statement].

This format is used for sequential access, allowing the file to be
retrieved sequentially based on the ALTERNATE RECORD KEYS (secondary
indexes) via the KEY IS clause. Once this format is executed, the
Format 1 READ statement should be used. The index is used for each
READ until another secondary index is specified via the KEY IS clause
of a READ statement.

19 - 11 November 1977

SECTION 19 PDR3056

R E W R I T E STATEMENT

FORMAT:

REWRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement . . .]

GENERAL RULES:

1. The REWRITE statement physically replaces an existing record.

2. The REWRITE statement can change any or all data-fields in the
record except the prime record key.

3. The file must be opened for 1-0 for all access methods.

4. A record must have been READ successfully prior to the REWRITE.
This is required to lock the record and ensure that it cannot be
updated by another program running concurrently.

5. In the FROM data-name-1 option, the primary RECORD KEY must equal
the key from the previous READ or the INVALID KEY conditions will
occur. The FROM option allows the record to be created in another
area. It is equivalent to MOVE data-name-1 TO record-name prior to
the execution of the REWRITE statement.

6. Control is passed to the INVALID KEY statement if the primary key
is changed. If this statement is not present, control is then passed
to the USE DECLARATIVE. One or the other of these statements must be
present, or the program will terminate if the invalid statement is
activated. Refer to Table 19-1 for status codes.

REV. 0 1 9 - 1 2

PDR3056 INDEXED SEQUENTIAL FILES

S T A R T STATEMENT

FORMAT:

START file-name [KEY IS [<
GREATER THAN 1
NOT LESS THAN >] data-name]
EgjAxrru J

[INVALID KEY imperative-statement . . .] .

GENERAL RULES:

1. The START statement enables an Indexed organized file to be posi
tioned for reading at a specified key value. This is permitted for
files open in either sequential or dynamic access modes. The START
verb is not allowed with the RANDOM access.

2. Option 1:

START file-name.

This option positions the file to the value contained in the RECORD
KEY data-name. If that record is not present on the file, control is
passed to the DECLARATIVE section if present; otherwise the program
terminates.

3. Option 2:

START file-name KEY IS data-name.

This option will position the file to the value contained in data-name
(data-name is the name of either RECORD KEY or one of the ALTERNATE
RECORD KEYs). If the record is not contained on the file, control
is passed to the DECLARATIVES - otherwise the program terminates.

4. Option 3:

{GREATER THAN 1
NOT LESS THAN >] data-name]
EQUAlTrn J

[INVALID KEY imperative-statement . . .]

If the option GREATER or NOT LESS is specified, the file is positioned
for the next access to be greater than or less than the value specified
in the data-name. This option allows the keys to contain partial
values.

The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name, and the STATUS code returned is 23 on a full
key.

19 - 13 November 1977

SECTION 19 PDR3056

5. START does not retrieve a record, but only positions to a
desired record.

EXAMPLE:

Consider the following short indexed file. Each record contains
just two fields: A NAME field which serves as primary key, and
a COMPANY field:

NAME COMPANY

Source coding relating to the file might be:

ENVIRONMENT DIVISION.

SELECT FILE-1 ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS NAME.

DATA DIVISION
FILE SECTION.
FD FILE-1 LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS 'FILE-1'.
01 FILE-1-RECORD.

03 NAME PIC XQO).
03 COMPANY PIC X(25).

A pictoral view of this file is presented below.

data-name

PICTURE

Values:

NAME

PIC X(10)

BLYE
CLAPP
GRIER
HARPER
KEANE

COMPANY

PIC X(25)

REPORTCO
MERGANTHALER
AUTOMATION
DESIGNERS
REPORTCO

REV. 0 19 14

PDR3056 INDEXED SEQUENTIAL FILES

If a sequential traverse of this file is performed, records are
returned in sequence based on primary key:

BLYE
CLAPP
GRIER
HARPER
KEANE

REPORTCO
MERGANTHALER
AUTOMATION
DESIGNERS
REPORTCO

To obtain specific records with a START statement, a partial (or
full) key is placed in the key field (NAME).

If the intent is to obtain records of people whose name begins
with the characters F, G, H, and I, program actions should include
the following type of logic:

MOVE fFf to NAME.

START FILE-1 KEY IS NOT LESS THAN NAME.

Place partial key value
in key field.

Find the first record
whose key is not less
than 'F'. This positions
the file to the record.

READ FILE-1 NEXT RECORD.

READ FILE-1 NEXT RECORD.

This action will retrieve
the desired record. In
this example, it will be
the record 'GRIER
AUTOMATION'.

This action will retrieve
the next sequential
record, 'HARPER DESIGNERS'

READ F I L E - 1 NEXT RECORD. This action will retrieve
the next sequential record,
'KEANE REPORTCO'.
Examination will indicate
all desired records have
been obtained.

19 15 November 1977

SECTION 19 PDR3056

W R I T E STATEMENT

FORMAT:

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement].

GENERAL RULES:

1. The WRITE function releases a logical record for an output or
1-0 file.

2. Prior to the WRITE statement, a valid, unique value must be in
the primary RECORD KEY data-name. If the FROM option is used, the
unique value in RECORD KEY data-name must be in the relative loca
tion of data-name-1. If the primary key is not unique, the invalid
statement or the DECLARATIVE section will be executed. Refer to
Table 19-1 for error conditions.

REV. 0 1 9 - 1 6

PDR3056 RELATIVE FILE PROCESSING

SECTION 20

RELATIVE FILE PROCESSING

DEFINITION

Relative file organization is permitted only with disk storage
devices. Records are stored and retrieved based on a relative
record number. For example, the 10th record is the one addressed
by relative record number 10 and is the 10th record area whether
or not records 1 through 9 have been written.

20 - 1 November 1977

SECTION 20 PDR3056

F I LE C O N T R O L

FORMAT:

SELECT file-name ASSIGN TO PFMS

ORGANIZATION IS RELATIVE

[ACCESS MODE IS <
'SEQUENTIAL^
RANDOM]
DYNAMIC .

v. s

RELATIVE KEY IS data-name-1

[FILE STATUS IS data-name-3]

GENERAL RULES:

1. SELECT file-name

This clause specifies the name of the relative file. Refer to
Environment Division for rules.

2. ORGANIZATION IS RELATIVE

This specifies that the file named in the SELECT statement contains
data organized by record number and processed by the File Processing
facility of the operating system.

[SEQUENTIAL
3. [ACCESS MODE IS < RANDOM

^DYNAMIC J

This clause specifies how a relative file is written or retrieved.

A. SEQUENTIAL:

If access mode is not specified, the access mode will
default to sequential. This access mode specifies that
records will be written or retrieved sequentially. A READ
statement retrieves the records sequentially.

B. RANDOM:

Specifies that the records are to be written or retrieved
randomly based on the value placed in the RELATIVE KEY
field prior to a READ or WRITE. When RANDOM access is
used, the complete RELATIVE KEY value must be placed in
RELATIVE KEY, or the record will not be found. Random
mode precludes a sequential READ or WRITE.

REV. 0 20

PDR3056 RELATIVE FILE PROCESSING

C. DYNAMIC:

When this access method is specified, the program can read
or write randomly or sequentially.

4. RELATIVE KEY IS data-name-1

The RELATIVE KEY clause specifies the data item within Working-
Storage which is used for the primary index.

A. Data-name-1 must not be defined in the Record Description.

B. Data-name-1 must not be specified with an OCCURS clause,
or be contained within a group affected by an OCCURS
clause.

C. Data-name-1 must not be specified with a P character in
its PICTURE clause, or be described with a separator
sign (/).

D. Data-name-1 must be a valid numeric integer, and cannot
contain a value greater than 999,999.

E. The value contained within data-name-1 must be unique;
duplicates are invalid.

The RELATIVE KEY is optional if access is sequential. In this case,
no RELATIVE KEY need be specified. However, in the creation of the
template, a RELATIVE KEY size equal to the maximum (48 bits), must
be given.

5. [FILE STATUS IS data-name-3]

The FILE STATUS is a two-character (one word), unsigned field
described in the Working-Storage section. After each access to
the operating system, a status code is placed in this field. For
a successful read or write, etc., the status code contains 00.
If the INVALID KEY or DECLARATIVES were involved, the error status
code is returned. The programmer then can determine what action
to take. Refer to Table 20-1 for error codes.

20 - 3 November 1977

SECTION 20 PDR3056

FILE
ORGANIZATION

Relative 0
1

2

3

9

STATUS KEY 1

- Successful completion

- End of filea

- Invalid key

- Permanent I-O error^

- Implementor - defined

0
0
1

3

4

0

0
1

2

6

9

STATUS KEY 2

- No further information

- No further information

- Sequence error*

- No record founde

- Boundary violation0

- No further information

- Locked record^

- Unlocked record'1

- Record already exits on Data Base

- Space relative key contains larger
value than used when CREATK was used.

- System error, call analyst.

aEnd of file. A READ statement was unsuccessful because there was no logical next
record in the file.

^Permanent I-O error. An I-O statement was unsuccessful because of an I-O error,
such as data check, parity error, or transmission error. For sequential ^
file only, a boundary violation.

cBoundary violation. Attempt was made to read or write beyond the externally
defined boundaries of a file. Disk space full.

eNo record found. Attempt was made to access a record, identified by key, but
the record does not exist in the file.

fSequence error. For a relative file: trying to write beyond the predefined
boundaries of the file. For indexed file: trying to write a record
containing a key which already exists on the file.

SLocked record. The record is locked and being updated by another program.

nUnlocked record. The record is not locked by a READ prior to a REWRITE.

Table 20-1. File Status Key Definitions, Relative I-O

REV. 0 20

PDR3056 RELATIVE FILE PROCESSING

PROCEDURE DIVISION

The COBOL statements listed in this section apply to their application
in RELATIVE file processing.

A complete description of all COBOL verbs, their functions, formats, and
rules, is provided in Section 16, PROCEDURE DIVISION.

The INVALID KEY clause may be written for Relative Files in the START,
READ, WRITE, REWRITE or DELETE statements. Its format is:

[INVALID KEY imperative-statement]

The INVALID KEY clause is executed if there is an error status code condi
tion, in which case control is transferred to imperative-statement. If
this clause is not present, control is passed to the DECLARATIVE section
for the corresponding file. If neither is specified, the program will abort
during execution. The result for the INVALID condition is returned via the
ERROR STATUS code (see Table 20-1).

20 - 5 November 1977

SECTION 20 PDR3056

C L O S E STATEMENT

FORMAT:

CLOSE index-file-name.

GENERAL RULE:

This is the only option possible for a Relative file.

REV. 0 2 0 - 6

PDR3056 RELATIVE FILE PROCESSING

D E L E T E STATEMENT

FORMAT:

DELETE file-name [INVALID KEY imperative-statement]

GENERAL RULES:

1. The DELETE statement logically removes a data record from the
relative file.

2. In sequential access, the record to be deleted must have been
successfully read before a DELETE can be executed. The RELATIVE KEY
cannot be changed between the READ and DELETE statement, otherwise
the INVALID KEY clause will be activated.

3. RANDOM and DYNAMIC access modes only need to place the value of
the record to be deleted in the RELATIVE KEY field. If that record
does not exist in the file, the INVALID KEY statement is executed and
the ERROR STATUS field will contain a value of 23.

20 - 7 November 1977

SECTION 20 PDR3056

O P E N STATEMENT

FORMAT:

1-0
OPEN (INPUT

OUTPUT
• index-file-name-1

GENERAL RULES:

1. A file opened as INPUT can only be accessed in a READ statement.

2. A file opened as OUTPUT can only be accessed in a WRITE statement.

3. A file opened as 1-0 can be either read or written.

4. The table below specifies the types of OPEN statements which are
permissible with the different ACCESS modes.

ACCESS
MODE IS

SEQUENTIAL

RANDOM

DYNAMIC

Procedure
Statement

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

Open Option in Effect

Input

X

X

X

X

X

Output

X

X

X

1-0

X

X
X
X

X
X
X

X

X
X
X
X
X

Table 20-2. OPEN Statements vs. Access Mode, Relative I-O,

REV. 0 20 - 8

PDR3056 RELATIVE FILE PROCESSING

R E A D STATEMENT

FORMAT 1 (SEQUENTIAL or DYNAMIC):

READ file-name [NEXT RECORD] [INTO data-name-1]

[AT END imperative-statement . . .].

FORMAT 2 (SEQUENTIAL, RANDOM or DYNAMIC):

READ filename [INTO data-name-1]

[INVALID KEY imperative-statement].

GENERAL RULES:

1. Format 1, Option 1 (SEQUENTIAL ONLY):

READ file-name [INTO data-name-1] [AT END imperative-statement].

For a sequential read, the file is read sequentially. If the INTO
clause is used, the data record is automatically moved into data-
name-1. When AT END is specified, control is passed to the imperative-
statement when the complete file has been read.

2. Format 1, Option 2 (DYNAMIC and SEQUENTIAL):

READ file-name [NEXT RECORD] [INTO data-name-1].

[AT END imperative-statement . . .] .

A. FOR DYNAMIC ACCESS:

This option allows the programmer to change from a random mode
to sequential reading with the NEXT record clause. The INTO
clause automatically moves the data-record into data-name-1.
The AT END clause transfers control at the end of the file.

If the NEXT RECORD option is not specified, the value of the
record to be retrieved must be placed in the RELATIVE KEY data-
name.

B. FOR SEQUENTIAL ACCESS:

The NEXT RECORD is not required with sequential access.

20 - 9 November 1977

SECTION 20 PDR3056

3. Format 2, Option 1:

READ filename [INTO data-name-1]

[INVALID KEY imperative-statement].

A. FOR SEQUENTIAL ACCESS:

The format reads the file sequentially. The RELATIVE KEY is
updated with the record number after each successful READ.
The INTO moves data into data-name-1. The INVALID KEY transfers
control if any of the status codes listed in Table 20-1 are
encountered.

B. FOR DYNAMIC and RANDOM ACCESS:

This format retrieves data based on the value contained in
RELATIVE KEY or data-name. If the record is not found, or any
other error status is encountered, control is passed to the
INVALID KEY clause. Refer to Table 20-1.
The INTO clause moves data to data-name-1.

REV. 0 20 - 10

PDR3056 RELATIVE FILE PROCESSING

R E W R I T E STATEMENT

FORMAT:

REWRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement . . .]

GENERAL RULES:

1. The REWRITE statement physically replaces an existing record.

2. The REWRITE statement can change any or all data-fields in the
record.

3. The file must be opened for 1-0 for all access methods.

4. A record must have been READ successfully prior to the REWRITE
statement. This ensures that the record cannot be updated by another
program running concurrently.

5. The FROM data-name-1 option allows the record to be created in
another area. It is equivalent to a MOVE data-name-1 TO record-name
prior to the execution of the REWRITE statement.

6. Control is passed to the INVALID KEY statement if the RELATIVE KEY
is changed since the successful read. If this statement is not present,
control is then passed to the USE DECLARATIVE. One or the other of
these statements must be present. Refer to Table 20-1 for status codes.

20 - 11 November 1977

SECTION 20 PDR3056

S T A R T STATEMENT

FORMAT:

fGREATER THAN "1
START file-name [KEY IS [< NOT LESS THAN }] data-name]

I^EQUAL TO J

[INVALID KEY imperative-statement . . .]

GENERAL RULES:

1. The START statement enables a relative file to be positioned for
reading at a specified key value. This is permitted for files open
in either sequential or dynamic access modes. The START verb is not
allowed with RANDOM access (see INVALID KEY).

2. Option 1:

START file-name

This option positions the file to the value contained in the RELATIVE
KEY data-name. If that record is not present on the file, control is
passed to the DECLARATIVE section if present; otherwise, the program
terminates.

3. Option 2:

START file-name KEY IS data-name

This option will position the file to the value contained in data-name
as defined in RELATIVE KEY. If the record is not contained on the
file, control is passed to the DECLARATIVES, otherwise they will
terminate.

4. Option 3:

fGREATER THAN 1
START file-name [KEY IS [< NOT LESS THAN \] data-name]

(EQUAL TO J

[INVALID KEY imperative-statement . . .]

The option GREATER or NOT LESS is specified, the file is positioned for
the next access to be greater than or less than the value specified in
the data-name. This option allows the keys to contain partial values.

REV. 0 2 0 - 1 2

PDR3056 RELATIVE FILE PROCESSING

The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name, and the STATUS code returned is a 23.

5. START does not retrieve a record, but only positions to a
desired record.

20 - 13 November 1977

SECTION 20 PDR3056

W R I T E STATEMENT

FORMAT:

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement]

GENERAL RULES:

1. The WRITE statement releases a logical record to a file.

2. In the FROM option, data-name-1 and record-name cannot reference
the same memory location.

3. The file must be open for OUTPUT or 1-0.

4. The INVALID KEY clause must be specified if the DECLARATIVE section
is not applicable. The program will terminate if an error code condi
tion arises. Refer to Table 20-1 for error codes.

5. FOR SEQUENTIAL ACCESS:

If the file is opened as OUTPUT, the records are placed in the file in
sequential order. The first record would have a position of 1, and
the record number returned into the RELATIVE KEY data-name would be
1, etc.

6. FOR DYNAMIC and RANDOM ACCESS:

The value of the record number must be placed in the RELATIVE KEY data-
name-1.

REV. 0 20 - 14

r

U T I L I T I E S

REFERENCE

PDR3056 COMPILER REFERENCE INFORMATION

SECTION 21

COMPILER REFERENCE INFORMATION

COBOL COMPILER PARAMETERS

Prime COBOL Compiler Mnemonics

Mnemonic parameters, which are the Prime-supplied default parameters
(i.e., those which need not be included), are underlined. The system
manager may have changed the defaults; if so, the programmer should
obtain a list of the installation-specific defaults.

B[INARY]
treename

YES
NO

EXP [LIST]

I[NPUT] treename

L[ISTING] i

treename
YES
NO
TTY

l̂ SPOOL

Specifies the binary (object output file. If
<treename> is given, that will be the name
of the binary file. If YES is used, the
name of the binary file will be B̂ -PROGRAM
(where PROGRAM is the source filename). If
NO is used, then no binary file is created
and it is a syntax check only. Omitting the
parameter is equivalent to the inclusion of
-BINARY YES. (See Table 21-1.)

Prints an expanded listing (in addition to
the source code listing) in the listing file.
This parameter has no effect for compilations
in 64R mode. No listing is generated unless
an output device file is specified using
LISTING (see NOEXPLIST).

Specifies the name of the input source pro
gram (see Table 22-1). This parameter must
not be used if the source filename immediately
follows the COBOL command; otherwise, it must
be included in the parameter list.

Specifies the listing device/filename.
treename - opens this file for the listing.

NO - no listing file is created.
TTY - the listing file is printed on

the user terminal.
SPOOL - the listing file is spooled

directly to the line printer.
If this parameter is omitted from the para
meter list, it is equivalent to the -LISTING
YES parameter inclusion.

21 November 1977

SECTION 21 PDR3056

COMPILER
MNEMONICS

treename

YES

NO

TTY

SPOOL

option
not
invoked

INPUT

looks for file named
treename as source
file

source filename must
be first option after
COBOL command

LISTING

opens file named treename:
as listing file

uses default filename for
listing file.
L^PROGRM

no listing file.

print listing on user
terminal.

spool listing directly to
line printer

same as YES

BINARY

opens file named
treename as

binary (object)
file.

uses default file
name for binary
file.
B<-PROGRM

no binary file.

same as YES

Table 21-1. Compiler File Specifications

NOEXPLIST Do not generate an expanded listing. This para
meter is meaningful only for completion in 64V
mode.

64R Generates binary code suitable for loading with
the Linking Loader. The user is given 64K words
(128K bytes) of user memory. When loading the
loader's MOVE command must be used to change load
mode to 64R. (See 64V.)

64V Generates binary code which must be loaded with
the SEG loader. This must be used for gener
ating shared procedures and/or programs requir
ing more than 128K bytes of user space; it
provides a user area up to 1.9 (or 3.9) mega
bytes (15 or 31 segments of 128K bytes each).
It may be run on any Prime 400 (or higher
system) under PRIMOS IV or V. (See 64R.)

REV. 0 21

PDR3056 COMPILER REFERENCE INFORMATION

Explicit Setting of the A Register

The COBOL compiler is invoked by the COBOL command to PRTMOS

COBOL treename [1/A-register]

where treename is the treename of the COBOL source file, and A-register
is the (octal] value of the A Register.

The default value of the A Register is:

'000777 (binary = 0000000111111111)

Input file is on disk
No expanded listing
Listing file is on disk
Binary file is on disk
Compile in 64R mode

If the default values are used, the A-register parameter may be omitted.

Bit values corresponding to the mnemonic parameters are: (defaults are
underlined).

MNEMONIC

BriNARY]
EXP[LIST]
I[NPUT]
L[ISTING]
NOEXPLIST
64R
64V

BIT(S;

14, 15,
4

8, 9,
11, 12,

4
6
6

)

16

10
13

SET TO

000,001,111 (see table 21-2)
1

000,001,111 (see table 21-2)
000,001,111 (see table 21-2)

0
0
1

Binary bit settings are converted to octal A-register values by:

1. Grouping bits by threes, starting from bit 16.

2. Converting each group to its octal value.

21 - 3 November 1977

SECTION 21

EXAMPLE:

PDR3056

Bit
Number

Binary
Value

Octal
Value

2 3 4

0 0 , 0

0

l±L±L
0 - 0 | 0

±4£
LLLJ X

11 .12 .13

1 , 1 . 1

14 15 16

AOJ2

Figure 21-1. Bit Conversion, Binary/Octal

Bit specifications for input/output devices are given in the table below:

Bits

000

001

111

Octal

0

1

7

Device

None

User Terminal

Disk (PRIMOS file system)

Mnemonic Parameter

NO

TTY

Table 21-2. Input/Output Device Bit Specification

NOTE: Other values (2-6) are reserved for future use. The default is 7,

REV. 0 21 _ 4

PDR3056 COMPILER REFERENCE INFORMATION

0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

b i t posi t ion
numbers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

default (octal)

default (binary)

7 MNEMONICS (given in
capital letters)

.binary file "̂
BINARY

.listing file
LISTING

•source file
INPUT J

SEE:
File
Values
below.

.compilation mode
64R=0 64V=2

expanded listing
NOEXPLIST=0
EX.PLIST=1

f 8 9 10J
Bi t s f l l 12 13 >

H4 15 16j

0 0 0

0 0 1

1 1 1

Others

Octal

0

1

7

2-6

FILE VALUES

Device/File Mnemonic

None NO

User Terminal TTY

Disk

Reserved for future use

Figure 21-2. Bit-Mnemonic Correspondence, A Register

21 November 1977

SECTION 21 PDR3056

COMPILER-GENERATED FILES

File Types

Three types of files may be involved during compilation. They are:
source file, listing file, object file. Of these, the listing and
object files are compiler-generated. Corresponding PRIMOS file units
are given in Table 21-3 below.

File Type

Source

Listing

Obj ect

PRIMOS file unit

1

2

3

Table 21-3. PRIMOS File Units

File Names

If disk is specified as the device for the listing and/or object file,
the COBOL compiler causes these files to be opened under the filename
specified in the compile command. The default convention for a listing
file is L<-file-name. The default convention for an object file is
B<-file-name.

Thus, for a source file named SAM, following the compile command COBOL
SAM, the listing and object files would exist in the current UFD as L«-SAM
and B+-SAM, respectively.

If the source file is given as a treename, e.g., [MFD]>UFD1 ...>SAM, where
the file SAM does not reside in the current UFD (that in which compilation
is occuring), the listing and object files will still be opened as L+-SAM
and B*-SAM, respectively. Although the source exists in another UFD, L<-SAM
and B+-SAM will, nevertheless, be opened in the current UFD.

If the user desires the listing or object files to have other than default
names as outlined above, the PRIMOS command, LISTING, must be invoked prior
to compilation. Its format is:

LISTING filename-2

where filename-2 is the actual name under which the listing file will be
stored.

REV. 0 21

PDR3056 COMPILER REFERENCE INFORMATION

The command LISTING SAMLST would open a listing file in the current UFD,
on PRIMOS file unit 2, under the filename SAMLST instead of L«-SAM. NOTE:
In this instance, A-register bits 11-13 must be set to '7 or nothing will
be written into the file.

File Manipulation

The listing output(s) of more than one source file can be concatenated if
all listings are generated prior to closing the listing file. For example:

LISTING filename-2

COBOL Source-1 1/A-register

COBOL Source-n 1/A-register

CLOSE ALL

NOTE: System responses are not printed in the example above. Filename-2
will contain the concatenation of all listing outputs from Source-1, ...,
Source-n (for those compilations wherein listings were specified).

BINARY Filename-3 opens a binary (object) file with the specified name (in
the current UFD) on PRIMOS file unit 3. This inhibits the compiler instruc
tion COBOL from opening a default object file.

NOTE: The default value of bits 14-16 of the A-register is '7 - disk file
system. If not using the default A-register values
14-16 to '7 or nothing will be written into the object file. Object files
can also be concatenated in the same manner as listing files.

If the BINARY or LISTING commands are used prior to COBOL to establish non-
default files, then the COBOL command does not close these files upon comp
letion.

After COBOL returns command to PREOS, these files should be closed by the
user by:

L J ^Filename-2J]Filename-3j

or
C[LOSE] ALL

2 1 - 7 November 1977

PDR3056 SEG REFERENCE

SECTION 22

SEG REFERENCE

COMMAND SUIWARY

A complete list of SEG commands is given in this section in alphabetical
order. Underlining shows the acceptable command abbreviations. Items
in brackets ([]) are optional.

SEG Commands

ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to another UFD.

ufd-name

password

ldisk

key

is the name of the UFD to be attached to; omission
is home UFD.

is password of UFD to be attached to if password-
protected.

is logical disk on which MFD is to be searched for
UFD specified.

'0 (or omitted)
'100000
'177777

search logical disk 0
search all logical disks
search logical disk on which
current UFD is located

is key for attach/set information.

0 attach to UFD; do not set home
1 attach to UFD; set home to new current file
2 attach to sub-UFD in current UFD; do not

set home to new current UFD
3 attach to sub-UFD in current UFD; set home

to new current UFD

A/SYMBOL sname [segtype] segno size

Places a symbol and reserves 0 or more locations in memory for it.

sname is the name of the symbol

segtype is the type of segment either DATA or PROCEDURE; if
omitted, a data segment is assumed. lF~the segment
does not yet exist, it will be created.

22 November 1977

SECTION 22 PDR3056

segno is the absolute octal segment number

size is the number of locations (octal) to be reserved
for the symbol; if omitted 0 is assumed.

COMMON ABS segno

Specifies segment into which COMMON will be loaded.

segno is the absolute octal segment number into which COMMON
will be loaded.

COMMON REL segno

Establishes a relative assignment number for segment (s) into which
COMMON will be loaded.

segno is the segment number into which COMMON will be loaded;
it is a small octal number.

DELETE [filename]

Deletes saved SEG runfile with name filename. If filename is omitted,
the established runfile is deleted.

D/xx

Perform load operation with same numeric parameters as previous load
command.

xx represents one of the load commands: LOAD, LIBRARY,
RL, PL, IL.

D/ may be combined with P/ as either D/P/xx or P/D/xx

EXECUTE [1/a-reg] [2/b-reg] [3/x-reg]

First SAVEs the program with the register settings specified by the user,
or the default values if the register setting is not specified. It then
executes the program. After execution command is returned directly to
PRIMOS. The default values are almost always used.

a-reg initial value of A register
b-reg initial value of B register
x-reg initial value of X register

REV. 0 22

PDR3056 SEG REFERENCE

F/xx [filename] [addr psegno Isegno]

F/S/xx [filename] [addr psegno Isegno]

Forceloads all routines in an object file.

xx is one of the load commands LOAD, LIBRARY, RL, PL, or
IL. filename is the object rTle to be forceloaded.

xx filename
LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted PFTNLB

and IFTNLB forceloaded)

addr is the starting address in psegno for the procedure part
of the binary file. If 0 is specified, the current PBRK
is used.

NOTES:

1. Simple forceload of object file.

psegno relative assignment number of segment into which
procedure is to be loaded.

Isegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used.

2. Forceload of object file to specific segments.

psegno absolute octal number of segment into which pro
cedure is to be loaded.

Isegno absolute octal number of segment into which link
frame is to be loaded.

F/S/xx may be written S/F/xx

F/ may also be combined with D/ or P/ as D/F/xx (or F/D/xx) and P/F/xx
(or F/P/xx).

HELP

Prints a list of the SEG commands at the user's terminal.

22 - 3 November 1977

SECTION 22 PDR3056

IL [addr psegno Isegno]

Loads the impure FORTRAN library IFTNLB. This form of the command is
rarely used; loading to specific segments is more usual.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

psegno relative assignment number of segment into which
procedure is to be loaded.

Isegno relative assignment number of segment into which
link is to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

INITIALIZE [filename]

Initializes SEG's loader and restarts it.

filename is name of SEG runfile to be initialized and/or opened.
If omitted, the established runfile name is used.

LIBRARY [filename] [addr psegno Isegno]

Loads a library file from UFD=LIB.

filename is the name of the library file to be loaded; if
omitted, the FORTRAN library files PFTNLB and
IFTNLB are loaded.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

psegno relative assignment number of segment into which
procedure is to be loaded.

Isegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

REV. 0 22

PDR3056 SEG REFERNECE

LOAD synonym for VLOAD
LOAD * synonym for VLOAD ^

LOAD filename [addr psegno Isegno]

Loads a binary file.

filename is the name of the binary file to be loaded.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

psegno relative assignment number of segment into which
procedure is to be loaded.

Isegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

MAP filename-1 [filename-2] map-option
MAP * [filename-2] map-option

Prints specified loadmap of SEG runfile to user's terminal or to a
file.

filename-1 name of SEG runfile for which map is to be generated.

filename-2 name of file into which map is to be written. If
omitted, map is printed at user's terminal.

map-option type of loadmap to be generated

0 (or omitted) Full map
1 Extent map only
2 Extent map and base areas
3 Undefined symbols
4 Full map (identical to 0)
5 System programmer's map
6 Undefined symbols, alphabetical order
7 Full map, sorted alphabetically

NOTES:

1. Used to get a loadmap of a runfile other than the established
runfile.

2. Used to get a loadmap of the established runfile.

22 - 5 November 1977

SECTION 22 PDR3056

MAP [filename] map-option

Prints a loadmap of currently established runfile to user's terminal or
to a file.

filename is name of file into which load map is to be
written; if omitted, map is printed at user's
terminal.

map-option type of load map to be generated. Map-options
are the same as in SEG's MAP command.

MODIFY [filename]

Invokes the modification sub-processor.

filename is the name of the SEG runfile to be processed;
if omitted, the established runfile is used.

NEW filename

Duplicates all portions of the established runfile resident above segment
'4000, under the specified new name. The full map and all references
to segments below '4000 are preserved.

filename is the name of the new SEG runfile which is to be
created.

OPERATOR option

Allows the creators of specialized software to override basic restric
tions in SEG's loader. Its use is dangerous unless the programmer is
very careful. It is not considered to be useful for the applications
programmer. The actual implementation of OPERATOR may change from
revision to revision and it is not considered to be a supported function
of SEG.

Option Function

0 reinstate restrictions
1 relax restrictions

PATCH segno baddr taddr

Modifies the save range of an existing segment. Writes to the disk the
portion of the runfile specified as patched. It may not be used with
specifically addressed segments.

segno is absolute octal number of patched segment

REV. 0 22

PDR3056 SEG REFERENCE

baddr is lowest octal location of the patch

taddr is highest octal location of the patch

PL [addr psegno Isegno]

Loads the pure FORTRAN library PFTNLB. This form of the command is
rarely used; loading to specific segments is more usual.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

psegno relative assignment number of segment into which
procedure is to be loaded.

Isegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

PSD

Invokes the VPSD debugging utility.

P/xx [filename] option [psegno Isegno]

Loads an object file on a page boundary. A page boundary is an address
of the form 'yyOOO where yy is an even number.

xx is a load command: LOAD, LIBRARY, RL, PL, or IL.

filename is the object file to be loaded.

XX
LOAD or
PL or IL
LIBRARY

option

RL
filename
required
omitted
optional (if omitted, PFTNLB and

are loaded)

determines what shall be loaded

IFTNLB

PR load only procedure on a page boundary

DA load only link frames on a page boundary

(omitted) load both procedure and link frames on a page
boundary

22 - 7 November 1977

SECTION 22 PDR3056

psegno absolute octal number of segment into which procedure
will be loaded.

lsegno absolute octal number of segment into which link
frames will be loaded.

Default segments will be those of the current procedure and/or link
frame pointers; if necessary SEG will create new segments. If either
PR or DA is specified for option, loading in the non-specified segment
begins at its current load point. Only the first routine in the file
is placed on a page boundary.

P/ may be compounded with F/ to forceload on a page boundary F/P/xx or
P/F/xx (see F/xx).

gun
Returns user to PRIMOS command level (in SEG).

gun

Returns user to PRIMOS command level. Does not SAVE runfile (in SEG's
Loader).

RESTORE [filename]

Restores a SEG runfile to user memory.

filename is the SEG runfile to be restored; if omitted, the
established runfile is used.

RESUME [filename]

or

RESUME [filename]

Restores runfile to memory, if necessary, and then executes it.

filename is the name of the SEG runfile; if omitted, the
established runfile is used.

RETURN

Returns the user to the SEG command level. Unlike the RETURN command in
the Modification sub-processor this command does not SAVE the runfile.

REV. 0 22

PDR3056 SEG REFERENCE

RETURN

Writes entire runfile to disk and then transfers control to the SEG
command level (in SEG's Modification subprocessor).

RL filename [addr psegno Isegno]

Logically replaces a binary subprogram in the established runfile.

filename is the name of the module to be replaced.

addr is the starting address in the psegno for the

procedure of the binary file. If 0 is specified,
the current PBRK is used.

psegno relative assignment number of segment into which
procedure is to be loaded.

Isegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

R/SYMBOL sname [segtype] segno size

Places a symbol and reserves 0 or more locations in memory for it.

sname is the symbol name

segtype is the type of segment, either DATA or PROCEDURE;
if omitted, a data segment is assumed.

segno is relative segment reference number. If 0, the
first available segment of current type is used.
If segment does not yet exist, a new segment will
be created.

size is number of locations to be reserved for the
symbol; if omitted, 0 is assumed.

SAVE synonym for MODIFY

SAVE [1/a-reg] [2/b-reg] [3/x-reg]

SAVEs the result of the load by writing all buffers to the disk and
setting the stack into the first available segment (unless the user
has specified the stack with the loader's ST command). The user has
the option of setting the initial register values, but this is rarely
ever done.

2 2 - 9 November 1977

SECTION 22 PDR3056

a-reg value of A register to be saved
b-reg value of B register to be saved
x-reg value of X register to be saved

SEG filename

SEG

SEG filename 1/1

SEG 1/1

Invokes the segmented-address runfile utility.

NOTES:

1. filename is the name of the SEG runfile to be executed.
Loads the runfile into memory and starts execution.

2. Accesses the SEG commands to load, modify, and/or
execute a SEG runfile.

3. filename is the name of the SEG runfile restored to
memory prior to transfer of control to the VPSED
debugging utility. Control may be returned to SEG by
VPSD's, Q, or QU command and the program may then be
executed.

4. Allows the currently existing memory image to be examined
and/or modified with the VPSD debugging utility. Control
may be returned to SEG by VPSD's, Q, or QU command but the
resulting memory image cannot be executed at the SEG
command level.

SHARE [filename]

Converts portions of the SEG runfile corresponding to segments below
'4001 into runfiles resembling those for RMODE.

filename is the name of the SEG runfile which is to be split
out for sharing. If omitted, the established runfile
will be used.

SEG responds to the SHARE command by asking for a two-character ID as:

TWO CHARACTER FILE ID:

A separate runfile is created for each segment below '4001; the file
names are the two-character ID followed by the (octal) segment number.

REV. 0 2 2 - 1 0

PDR3056 SEG REFERENCE

SINGLE [filename] segno

Creates a runfile for specified segment number resembling one for
RMODE.

filename is the name of the SEG runfile from which an
RMODE runfile is to be split. If omitted,
the established runfile is used.

segno is the absolute octal number of the segment
for which the RMODE runfile is to be created.

SEG responds to the SINGLE command by asking for a two-character ID as:

TWO CHARACTER FILE ID:

The RMODE runfile is created with a filename composed of the two-char
acter ID followed by the (octal) segment number specified.

SK Ssize

SK Ssize 0 segno

NOTES:

1. Specifies stack size

ssize is minimum required stack size in octal
words; if 0 is specified, the default value
of '6000 is used, ssize = '177774 reserves
an entire segment for the stack.

2. Specifies stack location

segno is absolute octal segment number for the
stack.

addr is octal starting address for the stack in the
specified segment. Addr must be at least 4;
locations 0 to 3 must be reserved with R/SY.

3. Specifies stack size and segment for extension stack

ssize is minimum size of stack to be allocated.

segno is absolute octal number of first segment avail
able for the extension stack.

4. Specifies primary stack location and segment for extension
stack.

ssegno is absolute octal number of segment in which stack
begins.

22 - 11 November 1977

SECTION 22 PDR3056

addr is octal starting location of stack in starting
segment.

segno is absolute octal number of first segment avail
able for extension stack.

In 3 and 4, the extension stack-frame begins in segno followed by
segno+1, segno+2, etc., if needed.

At least '15 (12) words must be available in the starting stack segment.

SPLIT segno addr

SPLIT addr

SPLIT addr ssegno saddr esegno

Breaks a segment into procedure (lower) and data (upper) portions.

segno is the absolute octal number of the segment to be
split.

addr is the octal location of the split in the segment,
addr must be a multiple of '4000.

NOTES:

1. Splits segment as specified.

2. Splits segment '4000 and loads RMODE interlude program RUNIT
starting at location '4000.

3. Splits segment '4000, loads RUNIT and supports extension
stacks.

addr is address (octal) of split in segment '4000.

ssegno is absolute octal number of segment in which stack
will begin.

saddr is address (octal) at which stack begins in segno.

esegno is absolute octal number of first segment avail
able for stack extensions.

At least '15 (12) words must be available in the
starting stack segment.

STACK ssize

Sets the minimum stack size.

ssize is the minimum required stack size (octal). ssize =
'177774 forces use of an entire segment for the stack.

REV. 0 2 2 - 1 2

PDR3056 SEG REFERENCE

START segno addr

Sets a new address for start of execution.

segno is the absolute octal segment number.

addr is the new ECB address word (octal) in the specified
segment for start of execution.

SYMBOL [sname] segno addr

Defines a symbol at a specific location in memory (actually an entry in
the symbol table). SYMBOL may only be used to define a symbol before
it is referenced. It cannot be used to define initialized COMMON or to
satisfy unsatisfied references.

sname is the symbol name.

segno is the absolute octal segment number in which the
symbol is to be located.

addr is the octal address of the symbol in the specified
segment.

S/xx [filename] addr psegno lsegno

Loads an object file to specified absolute segments.

xx is a load command LOAD, LIBRARY, RL, PL, or IL.

filename is the object file to be loaded.

xx filename

LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted, PFTNLB and IFTNLB

are loaded)

addr is the starting load address (octal in the procedure
segment. If 0 is specified, loading starts at the
current pointer position (PBRK).

psegno is the absolute octal segment for loading procedure.

lsegno is the absolute octal segment for loading the link
frames.

If segments do not already exist, they will be created.

22 - 13 November 1977

SECTION 22 PDR3056

S/ may be combined with F/ as either S/F/xx or F/S/xx.

TIME [filename]

Prints at user's terminal, time of creation or last saved modification
of the runfile.

filename is the SEG runfile name; if omitted, the established
runfile is used.

VLOAD [filename]

Accesses the SEG loader.

filename name of SEG runfile; if omitted, established runfile
is used. If filename is name of an existing SEG
runfile, that runfile is initialized.

VLOAD * [filename]

Access the SEG Loader, preserving the contents of the specified runfile.

filename is the name of the SEG runfile to be accessed; if
omitted, the established runfile is used.

WRITE

Rewrites to the disks all segments of the established runfile above
segment '4000.

If NEW is given before WRITE, the segments will be written into the new
runfile; otherwise, the established runfile name will be used.

XPUNGE dsymbol dbase

Expunges some or all defined symbols from the symbol table.

dsymbol Action
0 delete only entry points, leaving COMMON areas
1 delete all defined symbols - including COMMON area

dbase Action
0 retain all base information
1 retain only sector zero information
2 delete all base area information

XP dsymbol is equivalent to XP Dsymbol 0
XP is equivalent to XP 0 0

REV. 0 2 2 - 1 4

PDR3056 PRIME COBOL SUMMARY

APPENDIX A

PRIME COBOL SUMMARY

FEATURES

Prime COBOL is based upon American National Standard X3.23-1974. Ele
ments of the COBOL language are allocated to twelve different functional
processing "modules".

Each module of the COBOL Standard has two non-null "levels"-- level 1
represents a subset of the full set of capabilities and features con
tained in level-2.

In order for a given system to be called COBOL, it must provide at least
level 1 of the Nucleus, Table Handling and Sequential 1-0 modules.

The following summary specifies the content of Prime COBOL with respect
to the Standard.

Module

Nucleus

Sequential 1-0

Relative 1-0

Features Available in Prime COBOL

All of level 1, plus these features of level 2:
Levels 77, 01-30, 88;
Value series or range, level 88 conditions;
AND OR = < > in conditions;
Procedure-names consisting of digits only;
COMPUTE with multiple receiving fields;
PERFORM VARYING one index;
Mnemonic-names for ACCEPT or DISPLAY devices;
Qualification of Names (Procedure Division);
Sign test;
String;
unstring;

[DAY
ACCEPT { TIME

(DATE

All of level 1 plus these features of level 2:
RESERVE clause and variable form of BLOCK;
Multiple operands in OPEN $ CLOSE, with individual

option per file.

All of level 1 plus:
RESERVE clause;
DYNAMIC access mode (with READ next);
START (with key relations EQUAL, GREATER, or NOT

LESS).

A November 1977

APPENDIX A

Module

Indexed 1-0

Library

Table Handling

Inter-program
Communication

PDR3056

Features Available in Prime COBOL

All of level 1 plus:
RESERVE clause;
DYNAMIC access (with READ next);
RANDOM access mode with READ by KEY;
START (with key relations EQUAL, GREATER, NOT
LESS).

Level 1

All of level 1 plus:
SEARCH

Level 1

* >

SYSTEM FILES

To utilize COBOL, the following files must be available on the system in
the UFD's specified:

UFD

CMDNCO

SYSOVL

LIBRARY

FILE-NAME

COBOL

C$$DAT
C$$DAR
C$$GEN
C$$FIN
C$$END
C$$64V (*)

COBLIB
COBKID
VCOBLB (*)

*Denotes new files for 64V mode.

REV. 0

PDR3056 PRIMARY COBOL SUMMARY

VCOBLB

The new VCOBLB

C$ADAT

C$ADAY

C$ATIM

C$INSP

C$UNSI/C$UNS1

C$STR1/C$STR2

C$IN

C$OS

C$CS

C$RS

C$XS

C$WS

COI/COR

CSI/CCR

Library contains the following common COBOL subroutines,

= returns current date in format YMMDD

= returns Julian date in format YYDD

= returns current time in format HHMMSSFF

H = Hour

M = Minutes
S = Seconds
F = Hundreth of seconds

= INSPECT statement

= STRING statement

= STRING statement

= File assignment initialization

= Open sequential file

= Close sequential file

= Read sequential file

= Rewrite sequential file

= Write sequential file

= Open indexed/relative file

= Close indexed/relative file

November 1977

APPENDIX B PDR3056

APPENDIX B

FILE ORGANIZATION

ACCESS METHODS

Sequential Access Method (SAM)

SAM files require that all entries in a file preceding a desired entry
be accessed in order to reach that entry. In other words, the file must
be read sequentially. This is most useful for files in which information
is normally entered into the file sequentially and retrieved from it in
the same manner.

Direct Access Method (DAM)

DAM files (RELATIVE) permit access to a specific entry in a file by spe
cification of physical disk record number. This permits the user to
locate an entry within a known position in the file more quickly than
does the SAM file structure. The size is restricted to 999,999 entries.

Indexed Sequential Access Method (INDEXED)

INDEXED method locates file entries through a key field search. The user
may retrieve a data entry with only a few disk accesses, regardless of
the position of the entry in the file. The primary index is based on the
description of the record key. The key value is embedded in the first
data field in the record. The secondary indexes are referenced by alter
nate record keys; up to five additional indexes may be specified. The
user must know in advance which index is to be used to locate a data entry.

REV. 0 B " 1

PDR3056 THE MIDAS TEMPLATE

APPENDIX C

CREATING ISAM AND RELATIVE FILES
THE MIDAS TEMPLATE

THE ISAM FILE

To initiate an INDEXED file for COBOL, a program called CREATK must be
run. This program creates a template for the ISAM file. The following
is a summary of CREATK, modified to reflect COBOL terms. For more
complete information, see Section 11 of this manual and PDR 3061
Reference Guide, Multiple Index Data Access System (MIDAS).

CREATK is a conversational program. A typical dialog is as follows
(all user responses are underlined):

Minimum Dialogue

User responses are underlined.

Prompt Response

OK, CREATK

MINIMUM OPTIONS? YES

Remarks

If minimum options is selec
ted, all index level keys
will have the same length
as the full key for the last
index level. The primary
key will be stored with the
data and not in the index
entries of the secondary
indices. All index blocks
will default to a length of
440 words.

FILENAME? [volume name>ufd passwd ldisk>] filename

NEW FILE?

DIRECT ACCESS?

YES

NO

Volume name>UFD: specifies
the name of disk and the
User File Directory (UFD)
on which the file is to
be created. Filename is
the user assigned filename.

For a new, indexed file.

November 1977

APPENDIX C PDR3056

Data Subfile Questions
(PRIME INDEX/RECORD KEY)

Prompt

KEY TYPE:

KEY SIZE=:

Response

B

B number

DATA SIZE=:

Remarks

Number is the number of bits
in the primary key. It is
equal to 8 times the number
of characters in the key;
e.g., 2 characters in a key
= 16 bits. The maximum size
for an indexed file is 32
characters or 256 bits.

number Number of words for a data
record, where number equals
the record length divided
by 2. For COBOL programs,
this includes the key size,
and a remainder factor of 1
if it applies.

(SECONDARY INDEX/Alternate Record Keys
alternate record key.)

this section is repeated for each

INDEX NO.?

DUPLICATE KEYS PERMITTED?

1-5 The numeric variable is the
(CR) number of the alternate

record key. Carriage return
(CR) will exit from CREATK,
specifying no alternate
indexes.

YES YES allows the data in
NO this key field to be

duplicated. NO indicates
that if the data in the key
field is duplicated, the
file will not be updated
and the INVALID KEY clause
or the USE DECLARATIVE
section will be activated.

KEY TYPE:

KEY SIZE=

B

B number Enter the number of bits
in the key; use same
formula as for primary
index.

REV. 0

PDR3056 THE MIDAS TEMPLATE

Prompt Response Remarks

USER DATA SIZE=: 0 No data may be entered for
(CR) secondary keys. The

response must be 0, (CR),
or 0 (CR). Either option
will return the user to
the prompt INDEX NO.? above,
from which he may exit from
CREATK, or continue with
alternate key specifications,

An actual example for sample program REF2 appears at the close of
Section 16.

C - 3 November 1977

APPENDIX C PDR3056

THE RELATIVE FILE

To initiate a relative file, a program called CREATK must be run. This
program creats a template for the relative file. The following is a
summary of a CREATK run used in creation of a relative file template.
For more information, refer to Section 11 of this manual, and PDR 3061
Reference Guide, Multiple Index Data Access System (MIDAS).

CREATK is a conversational program. A typical dialogue is as follows
(all user responses are underlined):

Minimum Dialogue

User responses are underlined.

Prompt Response

OK, CREATK

MINIMUM OPTIONS? YES

Remarks

If minimum options is selec
ted, all index level keys
will have the same length
as the full key for the last
index level. The primary
key will be stored with the
data and not in the index
entries of the secondary
indices.

FILE NAME? [volume name>ufd passwd ldisk>] filename

NEW FILE?

DIRECT ACCESS?

KEY TYPE:

KEY SIZE=:

YES

YES

B

B number

Volume name>UFD: specifies
the name of disk and the
User File Directory (UFD)
on which the file is to be
created. Filename is the
user assigned filename.

For a new, relative file.

Number is the number of bits
in the relative key; i.e.,
characters in the key X 8.
The maximum size is 6
characters, or 48 bits. In
sequential mode with no key,
size must be specified at
maximum: 48.

REV. 0

PDR3056 THE MIDAS TEMPLATE

Prompt

DATA SIZE=

Response

number

NUMBER OF ENTRIES TO ALLOCATE? number

INDEX NO.? (CR)

Remarks

Number of words for a data
record, where number equals
the record length divided
by 2 plus the remainder
factor of 1 if it applies.

number is the number of
entries to allocate in the
new KI/DA file. Entries
are numbered 1-n inclusive;
any references outside this
range results in an error.

This concludes template
creation and returns to
command level.

NOTE: If an invalid response is entered by the user, the question
(prompt) will be repeated.

C - 5 November 1977

PDR3056 REFERENCE TABLES

APPENDIX D

REFERENCE TABLES

PRIME COBOL VERBS INDEX

•

^
f

c

r

^

*

VERB

ACCEPT
ADD
ALTER
CALL
CLOSE
COMPUTE
COPY
DELETE
DISPLAY
DIVIDE
ENTER
EXHIBIT
EXIT
EXIT PROGRAM
GO TO
IFa
INSPECT
MOVE
MULTIPLY
OPEN
PERFORM
READ
READY TRACE
RESET TRACE
REWRITE
SEARCH
SET
START
STOP
STRING
SUBTRACT
UNSTRING
USE
WRITE

aIF is a verb

CATEGORY
(Depending on Format

I/O
Arithmetic or Conditional
Procedure Branch
Procedure Branch
I/O
Arithmetic or Conditional
Compiler Directing
I/O or Conditional
I/O
Arithmetic or Conditional
Compiler Directing
I/O
Procedure Branch
Procedure Branch
Procedure Branch
Conditional or Arithmetic
Data Movement
Data Movement
Arithmetic or Conditional
I/O
Procedure Branch
I/O or Conditional
TRACE MODE Directing
TRACE MODE Directing
I/O or Conditional
Table Handling
Table Handling
I/O or Conditional
I/O or Ending
Data Movement
Arithmetic or Conditional
Data Movement
I/O Conditional
I/O or Conditional

in COBOL, although not a ve

Special
Application

Interprogram Communication
File Handling

Interprogram Communication
File Handling

Interprogram Communication
Debugging

Interprogram Communication

File Handling

File Handling
Debugging
Debugging
File Handling

File Handling

File Handling
File Handling

>rb in the grammatical sense

PAGE

16-7
16-9
16-11
16-12,
16-14,
16-16
16-17
16-19,
16-20
16-21
16-23,
16-24
16-25
16-26,
16-27
16-28
16-32
16-34
16-36
16-37,
16-39
16-42,
16-44
16-45
16-46,
16-48,
16-52,
16-54,
16-56
16-57
16-60
16-62
16-67
16-69,

17-3
19-7,

19-8,

17-3

17-3

19-9,

19-10,

19-12,
18-5
18-5
19-13

19-16,

in English.

20-6

20-7

20-8

20-9

20-11

20-12

20-14

Table D-l. Prime COBOL Verb Index

D - 1 November 1977

APPENDIX D PDR3056

FILE STATUS KEY DEFINITIONS

FILE
ORGANIZATION

Sequential

Relative

Indexed

0
1
3

0
1

2

3

9

0
1

2

3

9

STATUS KEY 1

- Successful completion

- End of filea

- Permanent 1-0 Error"3

- Successful completion

- End of filea

- Invalid key

- Permanent 1-0 errorb

- Implementor - defined

- Successful completion

- End of filea

- Invalid key

- Permanent 1-0 error*3

- Implementor - defined

0
0
0
4

0

0
1

3

4

0

0
1

2

6

9

0

0
1

2

3

4

0

0
1

2

3

5

6
9

STATUS KEY 2

- No further information

- No further information

- No further information

- Boundary violation0

- No further information

- No further information

- Sequence error*

- No record founde

- Boundary violation0

- No further information

- Locked record^

- Unlocked record-"1

- Record already exists on Data Base

- Space relative key contains larger
value than used when CREATK was used.

- System error, call analyst.

- No further information

- No further information

- Sequence error*

- Duplicate key"

- No record founde

- Boundary violation0

- No further information

- Locked recorcP
i

- Unlocked record

- Value in key already in the database
and duplicates not specified when
CREATK was run.d

- Indices specified in the program do
not match indices used when CREATK
was run.

- Index size does not match size used
on creation.

- The disk is full

- System error, call analyst

REV. 0 D

PDR3056 REFERENCE TABLES

^nd of file. A READ statement was unsuccessful because there was no logical
next record in the file.

Permanent 1-0 error. An 1-0 statement was unsuccessful because of an 1-0
error, such as data check, parity error, or transmission error.
For sequential file only, a boundary violation.

^Boundary violation. Attempt was made to read or write beyond the externally
defined boundaries of a file. Disk space full.

^Duplicate key. Attempt was made to write (or, for an indexed file, rewrite)
a record which would create a duplicate key in the file. For an
indexed file, when file status is 92, a duplicate key condition
exists if the key value of the current key of reference is equal to
the value of that same key in the next record within the current key
of reference.

^o record found. Attempt was made to access a record, identified by key, but
the. record does not exist in the file.

^Sequence error. For a relative file: trying to write beyond the predefined
boundaries of the file. For an indexed file: trying to write a
record containing a key which already exists in the file.

^Locked record. The record is locked and being updated by another program.

Unlocked record. The record is not locked by a READ prior to a REWRITE.

Table D-2. File Status Key Definitions

D - 3 November 1977

APPENDIX D PDR3056

PERMISSIBLE INPUT/OUTPUT STATEMENTS

File
Organization

Sequential
Indexed
Relative

Indexed
Relative

Indexed
Relative

File Access
Mode

SEQUENTIAL

RANDOM

DYNAMIC

Procedure
Statement

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

Statement

Input

X

X

X

X

Output

X

X

X

1-0

X

X
X
X

X
X
X

X

X
X
X
X
X

Table D-3. Permissible Input/Output Statements-
Open Statements and Access Modes.

REV. 0 D

PDR3056 REFERENCE TABLES

PERMISSIBLE MOVES

RECEIVING

SENDING
a.

4 PQ

u
Pi

Q
W
CJ
i — i

ALPHABETIC X X

BINARY X (A)

ALPHANUMERIC
EDITED

X (C)

NUMERIC X X X (B)

NUMERIC EDITED X (C) X CC)

ALPHANUMERIC X (D) X

NOTES:

(A) If receiving operand length L is less than or equal
to 18, target Picture 9(L) is assumed. Otherwise,
the MOVE is disallowed.

(B) The source is converted to DISPLAY form with
separate trailing sign (blank for positive), then
moved as a character string source subject to
truncation or blank padding depending on receiving
its length.

(C) The source is considered as a character string.

(D) If source length L is less than or equal to 18,
source Picture 9(L) is assumed. Otherwise, the
MOVE is disallowed.

Table D-4. Permissible Moves

D - 5 November 1977

PDR3056 ASCII CHARACTER SET

APPENDIX E

ASCII CHARACTER SET

COLLATING SEQUENCE

The Prime COBOL collating sequence conforms to the American Standard
Code for Information Interchange (ASCII) collating sequence. The
octal value associated with each character in the Prime computer is
the basis for the sequence, where characters are arranged in ascending
value from top to bottom as in Table.

E - 1 November 1977

APPENDIX E PDR3056

ASCII CHARACTER SET

ASCII
Character

NUL (low-value)
(space)

! (exclamation)
" (quote)
(number)
$
1 (apostrophe)
(
)
A
+

, (comma)
- (minus)
. (period)
/ (virgule, slash, stroke)
0 (zero)
1
2
3
4
5
6
7
8
9
: (colon)
; (semicolon)
<
=
>
?

§ (at)
A
B
C
D
E
F
G
H
I
J
K
L
M

PRIME REPRESENTATION

Hexadecimal Octal

80
A0
Al
A2
A3
A4
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
CI
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD

200
240
241
242
243
244
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307
310
311
312
313
314
315

Punched Cards

12-0-9-8-1
No Punch
11-8-2
7-8
8-3
11-3-8
5-8
12-5-8
11-5-8
11-4-8
12-6-8
0-3-8
11
12-3-8
0-1
0
1
2
3
4
5
6
7
8
9
8-2
11-6-8
12-4-8
6-8
0-6-8
0-7-8
8-4
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4

REV. 0

PDR3056 ASCII CHARACTER SET

ASCII CHARACTER SET

ASCII
Character

N
0
P
Q
R
S
T
U
V
w
X
Y
z
a
b
c
d
e
f
g
h
i
J
k
1
m
n
0

P
q
r
s
t
u
V
w
X

y
z
0 (+zero)
0 (-zero)
EEL (high-value)

PRIME REPRESENTATION

Hexadecimal Octal

CE
CF
DO
Dl
D2
D3
D4
D5
D6
D7
D8
D9
DA
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FD
FF

316
317
320
321
322
323
324
325
326
327
330
331
332
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
375
377

Punched Cards

11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
12-0-1
12-0-2
12-0-3
12-0-4
12-0-5
12-0-6
12-0-7
12-0-8
12-0-9
12-11-1
12-11-2
12-11-3
12-11-4
12-11-5
12-11-6
12-11-7
12-11-8
12-11-9
11-0-2
11-0-3
11-0-4
11-0-5
11-0-6
11-0-7
11-0-8
11-0-9
12-0
11-0
12-9-7

E - 3 November 1977

COBOL SYMBOLS

PUNCTUATION SYMBOLS - Used to punctuate program entries.

. period

, comma

; semicolon

" quotation mark!
1 apostrophe J

CODING SYMBOLS - Compiler symbol

* asterisk

/ Virgule

- hyphen

1. Used to terminate entries. Usually required.
2. Used to signify the decimal in numeric literals.

1. Used to separate operands or clauses in a series. Usually optional.
2. "European" notation for the decimal in numeric literals.

Used to separate operands or clauses in a series. Usually optional.

Used to enclose non-numeric literals.

.s.

Denotes an explanatory comment line when inserted in column 7 of a source
program line.

Denotes a skip to the top of a new page during a compiler listing. This
is coded in column 7 of a source program line.

Denotes a continuation-line for non-numeric literals when coded in column 7
of a source program line.

SIGN SYMBOLS/UNARY OPERATORS - Found in numeric literals and arithmetic formulas.

+ positive

- negative

1. Used as a sign character in the high-order (left-most) position of a
numeric literal.

2. As a unary operator, the effect of multiplication by numeric literal +1.

1. Used as a sign character in the high-order (left-most) position of a
numeric literal.

2. As a unary operator, the effect of multiplication by numeric literal -1.

COBOL SYMBOLS

ARITHMETIC SYMBOLS - Found in arithmetic formulas.

+ plus

- minus

* asterisk

/ virgule

= equal

() parenthesis

CONDITION SYMBOIS - Used in

= equal

> greater than

< less than

() parenthesis

REPORT ITEM OR EDIT SYMBOLS

. decimal point
(insertion character)

, comma
! (insertion character)

$ dollar sign
(floating character)

Addition.

Subtraction

multiplication

Division

"Make equal to"

Used to enclose expressions to control the sequence in which they are
performed.

conditional test expressions.

Denotes "is equal to".

Denotes "is greater than".

Denotes "is less than"

Used to enclose expressions to control the sequence in which conditions
are evaluated.

- Used in report item picture clauses.

Used to insert an actual decimal in the indicated position of a report
item.

Used to insert a comma in the indicated position (s) of a report item.
(May be used in conjunction with floating characters.)

Used to float an actual dollar sign (from left to right) in a report item,
so that exactly one $ is developed immediately to the left of the most
significant nonzero digit in any position where the symbol has been used.

>

COBOL SYMBOLS

REPORT ITEM OR EDIT SYMBOLS (continued . . .)

= equal
(insertion character)

/ virgule
(insertion character)

* asterisk
(replacement character)

+ plus
- minus or dash (fixed

sign control, or floating
character)

B letter B
(insertion character)

0 ZERO
(insertion character)

Z ZED
(replacement character)

CR credit
(fixed sign control
character)

DB debit
(fixed sign control
character)

P letter P
(decimal scaling
character)

Used to insert an actual equal symbol in the indicated position of a
report item.

Used to insert an actual slash in the indicated position (s) of an edited
item.

Used to replace leading zeros with an actual asterisk. Each * represents
a digit position in a report item.

1. Used as a fixed sign control character in the low-order (right^most)
position of a report item picture. The symbol does not replace a digit
position.

2. Used to float an actual plus or minus character (from left to right)
in a report item, so that exactly one + or - is developed immediately
to the left of the most significant nonzero digit in any position where
the symbol has been used.

Used to insert blanks in the indicated position(s) of an edited item.

Used to insert zero(s) in the indicated position(s) of an edited item.

Used to replace leading zero(s) with blank (s) in the indicated position (s)
of a report item.

Used as a fixed sign control character in the low-order (right-most)
position of a report item picture. It occupies 2 character positions in
the picture.

Used as a fixed sign control character in the low-order (right-most) position
of a report item picture. It occupies 2 character positions in the picture.

Used to position the assumed decimal point away from the number; e.g., an item
whose actual value is 25 will be treated as 25000 if its picture is 99PPPV.

PDR3056 ERROR MESSAGES

APPENDIX G

ERROR MESSAGES

TYPES OF ERROR MESSAGES

This Appendix contains the following categories of errors

• COMPILE-TIME ERRORS

• COMPILE-TIME WARNING MESSAGES

• RMODE RUN-TIME ERROR MESSAGES

• VMODE RUN-TIME ERROR MESSAGES

•

Error messages appear alphabetically within each category.

November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

' ") " REQUIRED AFTER SUBSCRIPTS.'

The close parenthesis following a subscript has been omitted.
Correct the coding and recompile.

'AREA-A VIOLATION; RESUMES AT NEXT PARAGRAPH/SECTION/DIVISION/VERB.'

Data was ignored.

'BLANK WHEN ZERO IS DISALLOWED.'

The BLANK WHEN ZERO clause is not permitted here. Use zero
suppression or other editing functions as indicated. Recompile.

'CONDITIONAL I/O STATEMENT DISALLOWED WITHIN "IF".'

Implied conditional such as SEARCH, AT END is invalid.

'DATA DIVISION ASSUMED.'

DATA DIVISION omitted; correct and recompile.

'DELETE/START NOT VALID FOR THIS FILE.'

See Table 16-3 OPEN Statements and Access Modes. Correct
coding, recompile.

'DISPLAY LIMITED TO 72 ON CONSOLE, 132 ON PRINTER.'

The file exceeds limitations. Correct and recompile.

'ERRONEOUS ASSIGNMENT.'

Device does not match file; correct and recompile.

REV. 0

PDR3056 ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

'ERRONEOUS FILE-NAME.'

SELECT file-name does not match FD file-name.

'ERRONEOUS QUALIFICATION; LAST DECLARATION USED.'

Data-name not unique, needs qualification.

'ERRONEOUS SELECT-SENTENCE; RESUMES AT NEXT SELECT OR AREA-A.»

The flagged SELECT is ignored. Correct errors, recompile.

'ERRONEOUS SUBSCRIPTING; STATEMENT DELETED.'

Refer to rules governing subscripting, Section 12, and
subscripting, OCCURS clause. Correct errors, recompile.

'EXCESSIVE OCCURS NESTING IS IGNORED.*

Restate, using a 'long-hand' form; recompile.

'FD-VALUE IGNORED SINCE LABELS OMITTED.'

Value of File-ID or owner ID specified with labels omitted.
Correct and recompile.

'FILE NEVER CLOSED.'

Include a CLOSE statement for the file, recompile.

'FILE NEVER OPENED.'

Include an OPEN statement for the file, recompile.

November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

'FILE NOT SELECTED; ENTRY BYPASSED.'

FD entry has no corresponding SELECT statement. Correct
and recompile.

'FILE SECTION ASSUMED.'

Correct and recompile.

'GROUP ITEM; PIC/VALUE/JUST/BLANK/SIGN/SYNC IGNORED.'

These clauses are not permitted at the group level. Delete
and recompile.

'GROUP SIZE >32,767; SET TO 1.'

Group and/or record size exceeds maximum. Correct and
recompile.

'ILLEGAL MOVE OR COMPARISON IS DELETED.'

Check IF and MOVE statements. Correct errors, recompile.

•IMPROPER OCCURS COUNT IGNORED.

OCCURS is greater than 1024.
correct and recompile.

Check rules for OCCURS clause;

'IMPROPER REDEFINITION IGNORED.

Check rules for REDEFINES clause. Correct errors;
recompile.

REV. 0

PDR3056 ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

'INCOMPLETE/TOO LONG STATEMENT DELETED.'

Check syntax; correct and recompile.

'INCONSISTENT READ USAGE.'

OPEN statement and USAGE do not agree.

'INCONSISTENT WRITE USAGE.'

OPEN statement and USAGE do not agree.

'INVALID BLOCKING IS IGNORED.'

BLOCK CONTAINS clause in error; correct and recompile.

•INVALID RECORD SIZE(S) IGNORED.'

RECORD CONTAINS clause in error; correct and recompile.

•ITEM ASSUMED TO BE BINARY.'

Elementary item with no PICTURE clause assumed binary.
Check coding.

'KEY DECLARATION OF THIS FILE IS INCORRECT.'

Correct coding and recompile.

'KEY MUST BE DECIMAL OR CHARACTER ITEM, MAX. 255 BYTES. STATEMENT DELETED.'

Key specification in error. Correct and recompile.

November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

•LABEL RECORDS OMITTED ASSUMED FOR UNIT-RECORD FILE.'

Check LABEL clause vis a vis device.

'LABELS ASSUMED FOR DISK FILE.'

Check LABEL clause vis a vis device.

'LEVEL 01 ASSUMED.'

Check coding; correct and recompile.

•MISORDERED/REDUNDANT SECTION PROCESSED AS IS.'

Correct coding sequence; recompile.

'NAME OMITTED; ENTRY BYPASSED.'

Unrecognizable data-name/syntax error. Correct and recompile,

'NON-UNIQUE SUBSCRIPT; LAST DECLARATION USED.'

Non-unique data-name. Qualification is required; recompile.

'OCCURS DISALLOWED AT LEVEL 01.'

Delete error and recompile.

•PARAGRAPH DECLARATION REQUIRED HERE.'

Paragraph-name required; recompile.

REV. 0

PDR3056 ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

'PERIOD ASSUMED AFTER PROCEDURE-NAME DEFINITION.'

Period missing after a paragraph-name. Correct and recompile.

'PICTURE IGNORED FOR INDEX ITEM.'

PICTURE disallowed on USAGE IS INDEX. Correct and recompile.

'RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS; LATER SIZES PREVAIL.'

Correct discrepancy, recompile.

'REDUNDANT CLAUSE IGNORED.'

Remove and recompile.

'REDUNDANT FD.

Multiple FD's. Delete and recompile.

'"SECTION" ASSUMED HERE.*

Insert SECTION and recompile.

'SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT.'

Advancing count is greater than 62. Correct and recompile.

•SOURCE BYPASSED UNTIL NEXT FD/SECTION.»

This relates to previous error. Correct previous error(s),
recompile.

November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

'STATEMENT DELETED DUE TO ERRONEOUS SYNTAX.'

Correct and recompile.

'STATEMENT DELETED DUE TO OMISSION OF RELATIONAL SYMBOL.'

Correct and recompile.

'STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.'

Incompatible data types must be reconciled; recompile.

'STATEMENT DELETED; OPERAND IS NOT A FILE-NAME.'

Correct syntax and recompile.

'UNIT-RECORD FILE BLOCKING IS IGNORED.'

Device and BLOCK clause are incompatible.

'UNRECOGNIZABLE ELEMENT IS IGNORED.'

Correct and recompile.

'UNRESOLVED PROCEDURE-NAME; STATEMENT DELETED.'

Correct and recompile.

'USING-LIST LEVELS MUST BE 01/77.'

Correct and recompile.

REV. 0

PDR3056 ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

•VALUE CLAUSE IGNORED.»

Delete and recompile.

'VALUE DELETED DUE TO TYPE CONFLICT.»

PICTURE and VALUE disagree. Correct and recompile,

'VALUE DISALLOWED DUE TO OCCURS/REDEFINES.'

Remove VALUE clause and recompile.

'VALUE DISALLOWED IN FILE/LINKAGE SECTION.'

Remove VALUE clause and recompile.

'VARYING ITEM MAY NOT BE SUBSCRIPTED.'

Correct and recompile.

r
November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES, System Level

INCONSISTENT READ USAGE
INCONSISTENT WRITE USAGE

A file has been defined to have usage of READ, WRITE or both,
but I/O statements in the program show differently. For
example, a file opened for I/O with only READ statements
present will generate one of these errors. Correct errors;
recompile.

PRWFIL UNIT NOT OPEN

Several conditions may prompt this error:

1. UFD full condition.

2. Misspelled or missing division header.

3. Unrecognized division. This problem is related to the
one above. A division is not being recognized because of
some other error. For example:

A. No period on last item in Working-Storage causes
the Procedure Division to be unrecognized.

B. Erroneous literal or continuations in the vicinity
of a division will cause an item to be unrecognized.

Check to see that at least two temporary files will fit in the
current UFD. Correct errors, recompile.

TBL-GROUP-ERROR

This error indicates an overflow of an internal table in the
COBOL compiler. Possible causes:

1. An excessive number of literals in one paragraph.
Separate the sentences into two paragraphs.

REV. 0 G - 10

PDR3056 ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES, System Level

2. A SELECT clause does not match an FD statement.
For example, the specified key does not exist in the
Record Description.

3. An IF statement has an implied subject, implied
relation, or parentheses. Correct and recompile.

G - 11 November 1977

APPENDIX G PDR3056

COMPILE-TIME WARNING MESSAGES

COMPILE-TIME WARNING MESSAGES

'COMP" IGNORED FOR DECIMAL ITEM.

COMP has been specified, although the item appears to be
decimal; the compiler is ignoring the COMP designation.
Results may be incorrect. Determine the correct specifica
tion and recompile.

DATA RECORDS CLAUSE WAS INACCURATE.

The DATA RECORDS clause does not agree with Record Description
Entries for the file. Correct and recompile.

ITEM IS UNSIGNED.

The item in this statement is unsigned, but appears to require
sign designation. Results may be indeterminate.

•LITERAL TRUNCATED TO ITEM SIZE'

The literal is too large as specified. Reduce its size or
enlarge the item size; recompile.

'MOVE IS DONE WITHOUT CONVERSION.

Data representation does not agree. Conversion will not occur:
results are indeterminate.

PERIOD ASSUMED ABOVE.

Statement syntax suggests a period; one has been generated by
the compiler.

REV. 0 G - 12

PDR3056 ERROR MESSAGES

RMODE RUN-TIME ERROR MESSAGES

RHODE RUN-TIME ERROR MESSAGES

BASE REGISTER = 0

A program item referenced by a Base Register is finding the
register clobbered or unset. Each 01 in the Linkage Section
and each FD in the File Section will use Base Registers.
Possible problems are:

1. A reference to data item located in a file description
before that file is opened or after it is closed;

2. A reference to an item in the Linkage Section when that
item was not present in the CALL statement;

3. A reference to a table entry with an out of range
subscript resulting in a faulty Base Register setting
for the next physical item.

4. An improper REDEFINES on item prior to an 01 with
Base Register problems.

Determine and correct the error. Recompile.

Incorrect source program coding is causing the compiler to
generate faulty object code.

Determine and correct faulty coding. Recompile.

INPUT/OUTPUT ERROR LINE XXXX

This error is caused by one of the following I/O statements:

OPEN, READ, WRITE, REWRITE, DELETE, START.

xxxx refers to the program line number. If the error involves
an OPEN statement, file assignments are incorrect. The program
is attempting to open for reading a file which does not exist.

Determine and correct the error. Recompile.

GENERATED CODE

13 November 1977

APPENDIX G PDR3056

RMODE RUN-TIME ERROR MESSAGES

NON-NUMERIC DATA ERROR LINE XXX

Possible causes include the figurative constant, SPACES,
erroneous subscripting, incorrect redefinition of data areas
signed data in an unsigned field, etc.

PERFORM OVERFLOW

The program has encountered a nesting of PERFORM statements
in excess of current capacity; the maximum depth is 24.

Rewrite the appropriate program sections. Recompile.

PERFORM OVERLAP

The program is performing a section of code which contains
the end point of execution for another section of code. See
the PERFORM statement in the COBOL REFERENCE SECTION.

Rewrite the appropriate program section. Recompile.

REDUNDANT OPEN

The program is attempting to OPEN a file which the program
has currently open.

Remove the OPEN statement or insert a CLOSE. Recompile.

SUBSCRIPT FAULT

The user has attempted to reference a table item with a
subscript value of zero or a negative number.

Correct the program. Recompile.

REV. 0 14

PDR3056 ERROR MESSAGES

RMODE RUN-TIME ERROR MESSAGES

BAD SVC

This error is most often caused by an incorrect specification
of parameters for system subroutine calls from the COBOL pro
gram. For example, a CALL to TIMDAT with incorrect parameters
will produce this error. The incorrect parameters may be:

1. Item not in word boundary;

2. Use of external decimal in COBOL program when
subroutine expects a single precision integer.

Correct the errors; recompile.

KIDA-generated messages

Error messages relating to MIDAS (KIDA) are described in a
separate document; PDR 3061, MIDAS.

Consult MIDAS manual. Correct errors; recompile program if
necessary.

G - 15 November 1977

APPENDIX G PDR3056

VMODE ERROR MESSAGES

VMODE ERROR MESSAGES

The general format for run-time 1-0 errors generated by a 64V mode COBOL
program is:

KI/DA FILE SYSTEM ERROR n, FILE-STATUS CODE f

FILE-ID: file-id OWNER-ID: owner-id DEVICE: device-name

FATAL RUN-TIME 1-0 ERROR (C$ER)
ER!

The first line of the message is omitted unless the error was caused by an
indexed or relative 1-0 operation which involved a call to the MIDAS file
system. If printed, n represents the error code returned from MIDAS. For
a complete discussion of MIDAS error messages, refer to PDR3061 Reference
Guide, Multiple Index Direct Access System. Further, f is the COBOL file-
status code, as defined in this manual.

The diagnostic message is one-line which briefly describes the probable cause
of the error. Most of the time the message will point directly to the problem.
A list of diagnostics and further explanations are provided below.

The next line identifies the file on which the error occurred. Information
printed includes file-id and owner-id, if specified, and device-name (specified
in SELECT clause).

A list of the COBOL run-time 1-0 error messages follow.

ATTEMPTED DELETE FROM UNOPENED FILE

The user attempted to delete a record from an unopened file.

ATTEMPTED READ FROM ILLEGAL DEVICE

The user attempted to read a record from the printer.

ATTEMPTED READ FROM UNOPENED FILE

The user attempted to read a record from an unopened or a
write-only file.

REV. 0 G - 16

PDR3056 ERROR MESSAGES

VMODE ERROR MESSAGES

ATTEMPTED REWRITE TO NON-DISK FILE

The user attempted to rewrite a record to a non-disk file
(a file not assigned to Prime File Management System).

ATTEMPTED REWRITE TO UNOPENED FILE

The user has attempted to rewrite a record to an input-only
or an unopened file.

ATTEMPTED START ON UNOPENED FILE

The user program executed a START statement on an unopened
file.

ATTEMPTED WRITE TO UNOPENED FILE

The user attempted to write a record to an unopened or a
read-only file.

END OF FILE ENCOUNTERED

An EOF mark was encountered on a sequential read statement.

ERROR ADDING SECONDARY INDEX, UNABLE TO DELETE PRIMARY

An error occurred adding a secondary index to an index file
on a WRITE statement. When the error was noticed by the COBOL
run-time package, an attempt was made to remove the primary
index entry which failed. This error is always fatal and may
indicate a problem with the MIDAS file structure or the COBOL
run-time package.

ERROR PROCESSING DELETE STATEMENT

An error occurred attempting to delete a record from an
indexed or a relative file.

17 November 1977

APPENDIX G PDR3056

VMODE ERROR MESSAGES

ERROR PROCESSING START STATEMENT

An unexpected error occurred while executing
on an indexed or relative file.

ERROR UNLOCKING RECORD

A MIDAS error occurred (from UPDAT$) in
a record.

FILE READ ERROR

General message indicating a sequential

FILE REWRITE ERROR

General message indicating a sequential

FILE WRITE ERROR

General message indicating a sequential

NO READ PRIOR TO DELETE

a START statement

an attempt to unlock

file

file

file

read error.

re-write error.

write error.

A READ statement must be executed prior to a DELETE on an
indexed or relative file in sequential access mode.

TO READ PRIOR TO REWRITE

A READ statement must be executed prior to a REWRITE when an
indexed or relative file is used in sequential access mode.

REV. 0 G - 18

PDR3056 ERROR MESSAGES

VMODE ERROR MESSAGES

NO UNITS AVAILABLE

All available file units are in use. Note that units 13-16 are
reserved for use by MIDAS and FORMS.

REDUNDANT OPEN ATTEMPTED

The program tried to open a file which was already open.

SEQUENTIAL WRITE TO RANDOM FILE OPENED IN 1-0 MODE

Attempt to use the sequential WRITE statement on a file opened
in 1-0 mode for random access is not permitted.

19 November 1977

APPENDIX G PDR3056

SEG LOADER ERROR MESSAGES

SEG LOADER ERROR MESSAGES

BAD OBJECT FILE

(VLOAD) User is attempting to load file which has faulty code. The
file may not be an object file or it may be incorrectly
compiled. FATAL, the load must be aborted

CAN'T LOAD IN SECTORED MODE

(VLOAD) The Loader is attempting to load code in sectored mode which
has not been compiled in sectored mode. This could arise if
trying to load a module compiled or assembled in 16S or 32S
mode. It is unlikely the average applications programmer will
encounter this. FATAL, abort load.

CAN'T LOAD IN 64V OR 64R MODE

(VLOAD) The Loader is attempting to load code in 64V mode which is
not compiled in that mode. This would arise if:

1. A program was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V and
its mode is not specified.

In case 1, the user should recompile the program. In case 2,
which the average applications programmer is unlikely to
encounter, the PMA module must be modified. FATAL, abort load.

COMMAND ERROR

(SEG) An unrecognized command was entered or the filenames/parameters
following the command are incorrect. Usually not fatal.

EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT

(VLOAD) An attempt was made to load a 64R mode program, causing a
reference to an illegal segment number. Recompile in 64V
mode. FATAL, abort load.

REV. 0 G - 20

PDR3056 ERROR MESSAGES

SEG LOADER ERROR MESSAGES

ILLEGAL SPLIT ADDRESS

(VLOAD) Incorrect use of the Loader's SPLIT command. Segments may be
split only at '4000 boundaries only (i.e., '4000, '10000,
'14000, etc.). Not FATAL; resplit segment.

MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT

(VLOAD) An attempt was made to load a 64R mode program wherein
COMMON would be allocated to an illegal segment number.
Recompile in 64V mode. FATAL, abort load.

NO FREE SEGMENTS TO ASSIGN

(VLOAD) All SEG's segments have been allocated; no more are available
at present. Use SYMBOL command to eliminate COMMON from
assigned segments, thus reducing the number of assigned segments
required. (User may need larger version of SEG and PRIMOS.)
Fatal, abort load.

NO ROOM IN SYMBOL TABLE

(VLOAD) Unlikely to occur; no user solution. A new issue of SEG with
a bigger symbol table is required; check with analyst. As a
temporary measure, user may try to reduce number of symbols
used in program. FATAL, abort load.

REFERENCE TO UNDEFINED SEGMENT

(VLOAD) Almost always caused by improper use of the SYMBOL command to
allocate initialized COMMON. Initialized COMMON cannot be
located with the SYMBOL command; use R/SYMBOL or A/SYMBOL
instead.

21 November 1977

APPENDIX G PDR3056

SEG LOADER ERROR MESSAGES

SECTOR ZERO BASE AREA FULL

(VLOAD) Extremely unlikely to occur. Not correctable at applications
level. Check with analyst. FATAL, abort load.

SEGMENT WRAP AROUND TO ZERO

CVLOAD) An attempt has been made to load 64R mode program. The pro
gram has exceeded 64K and is trying to be loaded over code
previously loaded. Recompile in 64V mode. FATAL, abort load.

REV. 0 G - 22

PDR3056 RESERVED WORDS

APPENDIX H

RESERVED WORDS

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCII *
ASSEMBLER*
ASSIGN
AT
AUTHOR
BEFORE
BLANK
BLOCK
BY
CALL
CHARACTER
CHARACTERS
CLOSE
COBOL
CODE-SET
COIWA
COMP *
COMP-3
COMPUTATIONAL
COMPUTATIONAL-3 *
COMPUTE
CONFIGURATION
CONSOLE *
CONTAINS
COPY
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC
ELSE
END
ENTER
ENVIRONMENT
EQUAL
ERROR
EVERY
EXCEPTION
EXHIBIT *
E X I T
EXTEND
FD
FILE
FILE-CONTROL
F I L E - I D *
FILLER
FIRST
FOR
FROM
GIVING
GO
GREATER
Hlffl-VALUE

* Prime reserved words

HICH-VALUES
1-0
I-O-CONTROL
ID *
IDENTIFICATION
IF
IN
INDEX
INDEXED
INITIAL
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS
JUST
JUSTIFIED
KEY
LABEL
LEADING
LEFT
LENGTH
LESS
LIFE-CYCLE *
LINE
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES
MODE
MOVE
MT7 *
MT9 *
MULTIPLY
NAMED *
NATIVE
NEGATIVE

NEXT

NOT
NUMBER
NUMERIC
OBJECT-COMPUTER
OCCURS

OF
OFF
OFFLINE-PRINT *
OMITTED
ON
OPEN
OR
ORDS
ORGANIZATION
OUTPUT
OWNER *
PAGE
PERFORM
PFMS *

PIC
PICTURE
POINTER
POSITION
POSITIVE

PRINTER *
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PUNCH *
QUOTE
QUOTES
RANDOM
READ
READER *
READY *
RECORD

H November 1977

APPENDIX H PDR3056

RESERVED WORDS

RECORDS
REDEFINES
REEL
REFERENCES
RELATIVE
REMARKS *
REMOVAL
REPLACING
RERUN
RESERVE
RESET
RESTART-FILE *
REVERSED
REWIND
REWRITE
RIGHT
ROUNDED
RUN
SAME
SEARCH
SECTION
SECURITY
SELECT
SENTENCE
SEPARATE
SEQUENTIAL
SET
SIGN
SIZE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
START
STATUS
STOP
STRING

SUBTRACT
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
THAN
THEN *
THROUGH
THRU
TIME
TIMES
TO
TRACE *
TRAILING
UNCOMPRESSED *
UNIT
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING
VALUE
VALUES
VARYING
WHEN
WITH
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS

* Prime reserved words

REV. 0 H

PDR3056

APPENDIX I

CONVERSION TABLES

CONVERSION TABLES

HEXADECIMAL AND DECIMAL CONVERSION

\0
to LO

LO

XX

HEX

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

163

XX

DEC

0
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

XX

HEX

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

162

XX

DEC

0
256
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840

XX

HEX

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

161

XX

DEC

0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240

XX

HEX

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

16°

XX

DEC

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

^ OCTAL AND DECIMAL CONVERSION

CO

CO

OCT

0
1
2
3
4
5
6
7

8*

XXX

DEC

0
4096
8192
12288
16384
20480
24576
28672

OCT

0
1
2
3
4
5
6
7

83

XXX

DEC

0
512
1024
1536
2048
2560
3072
3584

OCT

0
1
2
3
4
5
6
7

82

XXX

DEC

0
64
128
192
256
320
384
448

OCT

0
1
2
3
4
5
6
7

8l

XXX

DEC

0
8
16
24
32
40
48
56

OCT

0
1
2
3
4
5
6
7

80

XXX

DEC

0
1
2
3
4
5
6
7

November 1977

APPENDIX I PDR3056

HEXADECIMAL ADDITION TABLE

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

IB

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

E

F

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

F

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

NOTE: All Nunbers in Hex.

REV. 0 I - 2

PDR3056 EXPANDED LISTING FOR V MODE

APPENDIX J

EXPANDED LISTING FOR V MODE

V-MODE

In 64V mode (Prime 400 and Prime 500 units), COBOL can optionally
generate an expanded listing following the errors and warnings section
in the listing file. The expanded listing is fairly 'PMA-like', easily
readable, and is obtained by employing the mnemonic parameter -EXPLIST.
For example: COBOL program-name -EXPLIST.

For the expanded listing, instead of using source code identifiers,
Prime COBOL uses machine-generated labels in the listing. The
general format of these labels is X$HHHH

where: X is the label type (see below)
HHHH is a hexadecimal identifier.

LABEL TYPES

A - Paragraph or section entry point
B - Alter or Perform indirect word
C - Iteration variable
D - Decimal constant
E - Picture string
F - Character string
G - Generated label for program flow control
H - Passed parameter
S - Generated label - any usage allowed
Y - FCB - See VCOBLB listing for FCB formats
Z - File buffer

Other labels used are:

SB% - Stack base relative - used for temporary storage.
XB% - Temporary base relative - used for LINKAGE SECTION address.
WRKST$ - Working-Storage
WSECT$ - Working-Storage extension - used for items that are

statically allocated but not explicitly in working
storage. For example, the declaration 'indexed by
data-name', would place 'data-name' in WSEXT$.

EXAMPLE:

003233: 001310 EAFA 1, Z$0027+72C
003234: 001000.000725L

November 1977

APPENDIX J PDR3056

The example above says: At Relative Location'3233 in the procedure area
EAFA 1, File Buffer (ID=X0027) + 72 character offset. Note that the
word offset is '725 in the link frame.

An expanded listing file example is presented on the next several pages.
It represents a portion of an actual listing for sample program REF2
presented earlier.

For additional information pertaining to expanded code, and the Program
Statistics page which follows it, the user is referred to Section 5
COMPILING A SOURCE PROGRAM, and the PMA User Guide, PDR 3059.

REV. 0 J - 2

PDR3056 EXPANDED LISTING FOR V MODE

(0378)
(0379)
(0380)
(0381)
(0382)
(0383)
(0384)
(0385)
(0386)
(0387)
(0388)
(0389)
(0390)
(0391)
(0392)
(0393)
(0394)
(0395)
(0396)
(0397)
(0398)
(0399)
(0400)
(0401)
(0402)
(0403)
(0404)
(0405)
(0406)
(0407)
(0408)
(0409)
(0410)
(0411)
(0412)
(0413)
(0414)
(0415)
(0416)
(0417)
(0418)
(0419)
(0420)
(0421)
(0422)
(0423)
(0424)
E X P A N D E

000000;
000001:
000003:
000004:
000006;
*00007:

READ-3.

READ-4.

READ-5.

MOVE LOW-VALUES TO STATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.
GO TO READ-FILE-GO.

MOVE ZEROS TO BIRTHD.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTHD.
GO TO READ-FILE-GO.

MOVE LOW-VALUES TC FIRST-NAME.
START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME.

READ-FILE-GO.
READ DIRECTORY-FILE NEXT RECORD

AT END MOVE ZEROS TO PERFORM-COUNT
GO TO READ-FILE-EXIT.

DISPLAY DISPLAY-DIR.
READ-FILE-EXIT.

EXIT.

WRAPUP.
PERFORM LIST-DIR.
MOVE 'END OF INDEXED TEST TO CHANGE FILE' TO PRINT-LINE.
DISPLAY 'END OF INDEXED TEST'.
CLOSE LIST-FILE, DIRECTORY-FILE.
STOP RUN.

D

FORMAT-INPUT.
MOVE SPACES TO WS-RECORD.
DISPLAY 'ENTER LAST NAME'.
ACCEPT WS-LAST-NAME.
DISPLAY 'ENTER FIRST NAME'.
ACCEPT WS-FIRST-NAME.
DISPLAY 'ENTER ADDRESS '.
ACCEPT WS-ADDPESS.
DISPLAY 'ENTER CITY '.
ACCEPT WS-CITY.
DISPLAY 'ENTER PHONE NUMBER ' .
ACCEPT WS-PHONE-NO.
DISPLAY 'ENTER STATE XX'.
ACCEPT WS-STATE.
DISPLAY 'ENTER BIRTHDAY MMDDYY'.
ACCEPT WS-BIRTHD.
S T I N G F O R L I

001300
001000.000427L

001320
001000.000564L

001300
001000.000664L

EAFA

STFA

INDEXE
0,WRKST$+6C

0,Y$0027+20C

EAFA 0,Z$0027+8C

J - 3 November 1977

APPENDIX J PDR3056

000011: 001320
000012: 001000.000626L
000014: 001300
000015: 001000.000724L
000017: 001320
000020: 001000.000632L
000022: 0C1300
000023: 001000.000725L
000025: 001320
000026: 001000.000636L
000030: 001300
000031: 101000.000673L
000033: 001320
000034: 001000.000642L
000036: 061432.000376L

SPC LINE 112
000040: 001300
000041: 000000.000000F
000043: 001310
000044: 000400.000012S
000046: 001313.000032A
000050: 001115
000051: 061432.000374L
000053: 000500.000012S
000055: 000300.000000F

SRC LINE 113
000057: 001300
000060: 000000.000000F
000062: 001310
000063: 000400.000012S
000065: 001313.000032A
000067: 001115
000070: 061432.000374L
000072: 000500.000012S
000074: 000300.000056F

SPC LINE 114
000076: 061432.000372L
000100: 000100.000000F
000102: 000500.000012S
000104: 000300.000000F
000106: 001300
000107: 000400.000012S
000111: 001310
000112: 001000.000425L
000114: 001313.000001A
000116: 001115

SRC LINE 115
000117: 001300
000120: 001000.000425L
000122: 001303.000001A
000124: 001310
000125: 000000.000000F
000127: 001313.000001A

STFA

EAFA

STFA

EAFA

STFA

EAFA

STFA

PCL
A$0001 EQU

A$0002 EAFA

EAFA

LFLI
ZMVD
PCL
AP
AP

EAFA

EAFA

LFLI
ZMVD
PCL
AP
AP

PCL
AP
AP
AP
EAFA

EAFA

LFLI
ZMVD

EAFA

LFLI
EAFA

LFLI

0,Y$0027+88C

0,Z$0027+72C

0,Y$0027+96C

0,Z$0027+74C

0,Y$0027+104C

0,Z$0027+23C

0,Y$0027+112C

=C$IN ,*
*

0,F$81F1

1,SB

1,26

=TNOU ,*
SE
='32,SL

0,F$8209

1,SB

1,26

=TNOU ,*
SB
='32,SL

=I$AA12,*
= '0,S
SB
='1,SL
0,SB

1,WPKST$+2C

1,1

0,WRKST$+2C

0,1
1,F$8224

1,1

c--

REV. 0

PDR3056 EXPANDED LISTING FOR V MODE

000131: : 001117
000132: 141603.000000F

SRC LINE 116
000134: 061432.000370L
000136: 001100.002262L
•100140: 000100.000000F
000142: 000300.000000F

SPC LINE 117
000144: 01.000000F

SRC LINE 119
000145:
000146:
000147.
000151.
000153

: 02.000000F
: 001310
: 001000.000433L
: 001313.000120A
: 001116

SRC LINE 120
000154: 061432.000370L
000156: 001100.002104L
000160: 000100.000105F
000162: 000300.000143F

SRC LINE 120
000164: 061432.000370L
000166: 001100.002262L
000170: 000100.000141F
000172: 000300.000163F

SRC LINE 121
000174: 02.000101F

SRC LINE 121
000175: 04.000620L
000176: 061432.000366L
000200: 001100.000552L
000202: 000300.000171F

SRC LINE 122
000204: 001300
000205: 001000.000503L
000207: 001310
000210: 001000.002370L
000212: 001313.000144A
000214: 001303.000111A
000216: 001114

SRC LINE 122
000217: 061432.000364L
000221: 001100.002262L
000223: 000100.000000F
000225: 000100.000000F
000227: 000300.000000F

SRC LINE 124
000231: 061432.000362L
000233: 001100.002104L
000235: 000100.000000F
000237: 000300.000000F
000241: 01.000000F

G$0014

ZCM
BCNE

PCL
AP
AP
AP

JMP
EQU

A$000A LDA

S$0000

A$0011

EAFA

LFLI
ZFIL

PCL
AP
AP
AP

PCL
AP
AP
AP

LDA

STA
PCL
AP
AP

EAFA

EAFA

LFLI
LFLI
ZMV

PCL
AP
AP
AP
AP
EQU

PCL
AP
AP
AP

S$0001 JMP

J - 5

G$0014

=C$OS ,*
Y$0001,S
= '2,S
F$8230,SL

A$001F
*

= '240
1,WRKST$+14C

lf80

=C$OS ,*
Y$0011,S
= •1 s
— J. f o F$8230,SL

=C$OS ,*
Y$0001,S
= '2,S
F$8230,SL

= •0

Y$0027+76C
=C$OI ,*
Y$0027,S
='2,SL

0,WRKST$+94C

1,Z$0001

1,100
0,73

=C$WS ,*
Y$0001,S
S$0000,S
='62,S
='40077,SL
*

=C$RS ,*
Y$0011,S
S$0002,S
S$0001,SL
G$0015

November 1977

APPENDIX J PDR3056

SRC

SPC

SRC

SPC

SPC

SPC

SPC

SPC

SRC

LINE 124
000242: 01.0O0000F
LINE 125
000243: 001300
000244: 001000.002212L
000246: 0013J0
000247: 001000.002370L
000251: 001313.000144A
000253: 001303.000120A
000255: 001114
LINE 126
000256: 061432.000364L
000260: 001100.002262L
000262: 000100.000000F
000264: 000100.000226F
000266: 000300.000174F
LINE 127
000270
000271
000272
000274
000276

: P2.000145F
: 001310
: 001000.000660L
: 001313.001224A
: 001116

LINE 128
000277: 001300
000300: 001000.002212L
000302: 001310
000303: 001000.000664L
000305: 001313.000100A
000307: 001115
LINE 129
000310
000311:
000313.
000314.
000316:
000320:

001300
001000.002252L

001310
001000.000660L
001313.000010A

001115
LINE 130
000321:
000322
000324.
000325.
000327:
000331:

: 001300
: 001000.002256L
: 001310
001000.000724L
001313.000010A

001115
LINE 131
000332: 061432.000360L
000334: 001100.000552L
000336: 000100.000000F
000340: 000300.000000F
000342: 01.000341F
LINE 132
000343
000344
000346
000347

: 001300
: 001000.000427L
: 001310
: 000400.000012S

£$0002 JMP

G$0015 EAFA

EAFA

LFLI
LFLI
ZMV

PCL
AP
AP
AP
AP

S$0003 LDA
EAFA

LFLI
ZFIL

EAFA

EAFA

LFLI
ZMVD

EAFA

EAFA

LFLI
ZMVD

EAFA

EAFA

LFLI
ZMVD

PCL
AP
AP
AP
JMP

S$0004 EAFA

EAFA

A$0017

0fZ$0011

1,Z$0001

1,100
0,80

=C$WS ,*
Y$0001,S
S$0003,S
='62,S
='0,SL

= '240
1,Z$0027

1,660

0,Z$0011

1,Z$0027+8C

1,64

0,Z$0011+64C

1,Z$0027

1,8

0,Z$0011+72C

1,Z$0027+72C

1,8

=C$WI ,*
Y$0027,S
S$0004,S
G$0016,SL
G$0016

0,WPKST$+6C

1,SB

\>

REV. 0 J - 6

PDR3056 EXPANDED LISTING FOR V MODE

000351: 001313.000002A
000353: 001115
000354: 061432.000374L
000356: 000500.000012S
000360: 000300.000203F

SRC LINE 133
000362:

SPC LINE 135
000363: 061432
000365: 001300

SPC LINE 135
000367: 061432
000371: 001300

SPC LINE 136
000373:
000374: 000000
000376:
000377: 001000
000401: 001313

LFLI
ZMVD
PCL
AP
AP

1,2

=TNOU ,*
SE
='2,SL

01.000231 G$0016 JMP A$0011

000403: 001303
000405:

SRC LINE 137
000406: 061432
000410: 001100
000412: 000100
000414: 000100
000416: 000300

.000356L

.002104L

.000354L

.000552L

001300
.000000F
001310
.002370L
.000144A
.000022A
001114

.000364L

.002262L

.000000F

.000265F

.000000F

SRC LINE 139
000420
000421
000422
000424
000426

SPC LINE 140
000427:
000430:
000432:
000433:
000435:
000437:
000440:
000442:
000444:

SPC LINE 141
000446:

SRC LINE 141
000447:
000450:
000452:
000454:

SPC LINE 142
000456:
000457:

02.000270F
001310

001000.002370L
001313.000144A

001116

000000

000400
001313

061432
000500
000300

001300
.000000F
001310
.000012S
.000014A
001115
.000374L
.000012S
.000000F

02.000267F

04.000620L
061432.000366L
001100.000552L
000300.000417F

001300
001000.000425L

A$0017 PCL
AP

PCL

AP

EAFA

EAFA

LFLI
LFLI
ZMV

PCL
AP
AP
AP
AP

S$0005 EQU

A$001F IDA
EAFA

LFLI
ZFIL

LFLI
ZMVD
PCL
AP
AP

STA
PCL
AP
AP

=C$CS ,*
Y$0011,SL

=C$CI ,*
Y$0027,SL

0,F$825D

1,Z$0001

1,100
0,18

=C$WS ,*
Y$0001,S
S$0005,S
='62,S
='3,SL

= '240
1,Z$0001

1,100

EAFA 0,F$826C

EAFA 1,SE

1,12

=TNOU ,*
SB
='14,SL

LDA ='0

Y$0027+76C
=C$OI ,*
Y$0027,S
='3,SL

EAFA 0,WRKST$+2C

J - 7 November 1977

APPENDIX J PDR3056

002270>
002271>
002272>
002274>
002275>
002276>
002277>
002300>
002301>
002302>
P02303>
002304>
002305>
002306>
G02307>
002370>

P R O G R A M

000007
000000

100000
0C00C0
000000
000062
000062
000000
000000
000000
000003
0C0000
000000
000000

S T A T I S
Z$0001

T I C S

OCT
OCT
IP
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
DATA

7
0
Z$0001
100000
0
0
62
62
0
0
0
2
0
0
0
50(' ')

EXECUTABLE CODE SIZE: 2588 WORDS.
CONSTANT POOL SIZE: 511 WORDS.
TOTAL PURE PROCEDURE SIZE: 3099 WORDS.

WORKING-STORAGE SIZE: 168 BYTES.
TOTAL LINKFFAME SIZE: 1096 WORDS.

STACK SIZE: 102 WORDS.

TRACE MODE: OFF.

NO ARGUMENTS EXPECTED.

424 SOURCE LINES.

0000 ERRORS 0000 WARNINGS, P400/500 COBOL REV 14.0 <INDEXE>

REV. 0
J - 8

INDEX

*, PRIMOS 4-3

-WAIT 4-4

A-REGISTER SETTING, EXPLICIT 21-3

A-REGISTER SETTING, MNEMONIC 21-1

ACCEPT STATEMENT 16-7

ACCESS MODE IS 14-5, 14-7

ADD 16-9

ADDISK, PRIMOS 4-1

ADDRESSING THE SYSTEM 4-1

ADVANCING PHRASE, WRITE STATEMENT
16-69

AFTER PHRASE, WRITE STATEMENT
16-69

ALGEBRAIC SIGNS 12-27

ALIGNMENT RULES, STANDARD 12-26

ALL 12-16

ALPHABETIC ITEM 12-24

ALPHANUMERIC EDITED ITEM 12-24

ALPHANUMERIC ITEM 12-24

ALTER STATEMENT 16-11, 16-27

ALTERNATE RECORD KEY PHRASE,
INDEXED 1-0 19-3, 19-11

AMERICAN NATIONAL STANDARD 2-1

AMLC, PRIMOS 4-1

ANSI STANDARDS 2-1, 12-10

APPLICATIONS FUNCTIONS, SEG 7-6

ARITHMETIC EXPRESSIONS 12-28

ARITHMETIC EXPRESSIONS, RULES
12-29

ARITHMETIC OPERATORS 12-28

ARITHMETIC STATEMENTS 12-31

ASCII CHARACTER SET E-l

ASCII IS NATIVE 14-4

ASRCWD, PRIMOS 4-1

ASSIGN 14-5, 14-6

ASSIGN, PRIMOS 4-1, 4-4

ASSIGNING A DEVICE 4-4

ATTACH, PRIMOS 4-1

AUTHOR 13-1

AUTOMATIC LOADER 6-1

AVAIL, PRIMOS 4-1

BASE AREA ORIENTATION, LOADER 6-2

BASIC, PRIMOS 4-1

BASINP, PRIMOS 4-1

BEFORE PHRASE, WRITE STATEMENT
16-69

BINARY ARITHMETIC OPERATORS 12-28

BINARY ITEM 12-25

BINARY, PRIMOS 4-1

BLANK WHEN ZERO 15-15, 15-41

BLANK WHEN ZERO, EXAMPLES 15-42

BLOCK CONTAINS 15-4, 15-8

BOTTOM, EDITOR 4-9

C ALL, PRIMOS 4-5

C$IN (64V) , EXECUTION UTILITY
PROGRAM 8-2

CALL STATEMENT 16-1, 16-12, 17-1

X

INDEX

CAR 4-6

CARDR 4-6

CARRIAGE CONTROL 16-70

CBASIC, PRIMOS 4-1

CHAP, PRIMOS 4-1

CHARACTER SET, ASCII E-l

CHARACTER SET, PRIME'S 12-11

CHARACTER STRINGS 12-12

CLASS CONDITION 12-34, 16-29

CLASSES OF DATA 12-23

CLEARING THE USER ADDRESS SPACE
6-3

CLOSE STATEMENT 16-14

CLOSE, PRIMOS 4-1, 4-5

CM$L (64R), EXECUTION UTILITY
PROGRAM 8-2

CML/CIN ERROR MESSAGES 8-4

CMPRES, PRIMOS 4-1

CNAME, PRIMOS 4-1, 4-18

CNVTMA, PRIMOS 4-1

COBKID 11-1

COBOL CHARACTER SET 12-12, 12-14

COBOL COMPILER PARAMETERS 21-1

COBOL CONCEPTS 12-1

COBOL PROGRAM, SAMPLE 12-5

COBOL PROGRAM, SUMMARY 12-1, 12-3

COBOL STATEMENTS 16-1, D-l

COBOL SYMBOLS F-l

COBOL VERBS 16-1, D-l

COBOL, PRIMOS 4-1, 5-1

CODE-SET IS 15-4, 15-14

CODING RULES 12-10

COLLATING SEQUENCE 12-12, E-l

COLUMN DISPLAY, EDITOR 4-10

COMINPUT, PRIMOS 4-1

COMMAND FILES 7-6

COMMON, LOADER 6-1

COMOUTPUT, PRIMOS 4-1

COMP 15-36

COMP-3 15-36

COMPARISONS 12-32

COMPARISONS, NON-NUMERIC 12-32,
12-33

COMPARISONS, NUMERIC 12-32

COMPILE SEQUENCE, REF2 16-79

COMPILE-TIME ERROR MESSAGES G-2

COMPILE-TIME WARNING MESSAGES
G-12

COMPILER ERROR MESSAGES 5-2, G-2

COMPILER FUNCTIONS 5-4

COMPILER MNEMONICS 5-4, 21-1

COMPILER WARNING MESSAGES 5-3,
G-12

COMPILER-GENERATED FILES 21-6

COMPILING A SOURCE PROGRAM 5-1

COMPOUND CONDITION 12-35

INDEX

COMPUTATIONAL 12-25, 15-36

COMPUTATIONAL-3 12-25, 15-36

COMPUTE STATEMENT 16-16

CONDITION, CLASS 12-34, 16-29

CONDITION, COMPOUND 12-35

CONDITION, MULTIPLE 12-37

CONDITION, SIGN 12-34

CONDITION-NAME CONDITIONS 12-34,
15-44, 15-45, 16-29

CONDITION-NAMES 12-19

CONDITIONAL EXPRESSIONS 12-31

CONDITIONAL STATEMENTS 16-2

CONDITIONS, RELATION 12-31,
12-32, 16-29

CONDITIONS, SIMPLE 12-31

CONFIG, PRIMOS 4-1

CONFIGURATION SECTION,
ENVIRONMENT DIVISION 14-3

CONJUNCTION, NEGATING 12-37

CONNECTIVES 12-15

CONSOLE IS 14-3

CONVERSION TABLES 1-1

COPY STATEMENT 16-17

COPY, PRIMOS 4-1

COUNT IN PHRASE 16-62

CPMPC, PRIMOS 4-1

CPPMPC, PRIMOS 4-1

CR, PRIMOS 4-4

CREATE, PRIMOS 4-1

CREATING THE TEMPLATE (CREATK),
MIDAS 11-3

CREATK SEQUENCE, REF2 16-89

CREATK, MIDAS 11-1, 11-3

CREATK, MINIMUM DIALOGUE 11-4

CRMPC, PRIMOS 4-1, 4-5

CRSER, PRIMOS 4-1

CURRENCY SIGN IS 14-4

CX MODE 3-1

CX, PRIMOS 4-1

DATA DIVISION 15-1

DATA DIVISION, REF2 15-50

DATA LEVELS 12-24

DATA RECORD IS 15-4, 15-13

DATA REPRESENTATION 12-25

DATA, ACCEPT STATEMENT 16-8

DATA, CLASSES OF 12-23

DATA-NAMES 12-18, 15-20

DATABASE MANAGEMENT SYSTEM (DBMS)
11-9

DATE, PRIMOS 4-1

DATE-COMPILED 13-1

DATE-WRITTEN 13-1

DAY, ACCEPT STATEMENT 16-8

DBASIC, PRIMOS 4-1

DBMS 11-9

DECIMAL-POINT IS COMMA 14-4

INDEX

DECLARATIVES 16-1

DELAY, PRIMOS 4-1

DELETE STATEMENT 16-19

DELETE, PRIMOS 4-1, 4-18

DELETE, SEG 7-3

DELIMITED BY PHRASE 16-57, 16-62

DELIMITER IN PHRASE 16-62

DEPENDING ON PHRASE 16-27

DESECTORIZATION 6-2

DEVICE SPECIFICATIONS, SELECT
CLAUSE 14-6

DIRECT ACCESS METHOD, DAM B-l

DIRECT INDEXING 12-38

DISK FORMATS, EXECUTION'8-3

DISPLAY ITEM 12-25

DISPLAY STATEMENT 16-20

DIVIDED STATEMENT 16-21

DIVISIONS OF A COBOL PROGRAM: A
SUMMARY 12-1

DOWN BY 16-52

DUPLICATES PHRASE, INDEXED 1-0
19-3

DYNAMIC, INDEXED 1-0 19-3, 19-10,
19-11

DYNAMIC, RELATIVE 1-0 20-2

ED 4-8

ED, PRIMOS 4-1

EDB, PRIMOS 4-1

EDIT MODE 4-8, 4-9

EDITING CATEGORIES 15-30

EDITING, INSERTION 15-30

EDITING, PICTURE CLAUSE 15-28,
15-30

EDITING, SIGN CONTROL SYMBOLS
15-31

EDITING, SUPPRESSION 15-33

EDITOR 4-8

EDITOR COMMAND SUMMARY 4-13

EDITOR, EDIT 4-8

EDITOR, INPUT 4-8

ELEMENTARY ITEM 12-24

END DECLARATIVES 16-1

END OF COMPILATION MESSAGE 5-2

ENTER STATEMENT 16-23, 17-3

ENTERING AND MODIFYING PROGRAMS
4-8

ENTRY FROM OTHER MEDIA 4-4

ENVIRONMENT DIVISION 14-1

ENVIRONMENT DIVISION, REF2 14-9

ERROR MESSAGES G-1

ERROR MESSAGES, CML/CIN 8-4

ERROR MESSAGES, COMPILER 5-2, G-1

ERROR MESSAGES, LOADER 6-15

ERROR MESSAGES, RUN-TIME 8-4,
G-13, G-16

ERROR MESSAGES, SEG LOADER G-20

ERROR STATUS CODE, SEE FILE
STATUS KEY SETTINGS

INDEX

r EXECUTE SEQUENCE, REF2 16-91

EXECUTE, LOADER 6-1

EXECUTING THE LOADED PROGRAM 8-1

EXECUTION 64R 8-1

EXECUTION 64V 8-2

EXECUTION DISK FORMATS 8-3

EXECUTION TAPE FORMATS 8-4

EXECUTION UTILITY PROGRAMS, CM$L
(64R)/C$IN(64V) 8-2

EXHIBIT STATEMENT 16-24

EXIT PROGRAM STATEMENT 16-26,
17-3

EXIT STATEMENT 16-25

EXPAND, PRIMOS 4-2

EXPANDED LISTING FILE, REF2 J-l

EXTERNAL DECIMAL ITEM 12-25

EXTERNAL OPERATING SYSTEM COBOL
SORT PROCEDURES 9-1

FD 15-4

FIGURATIVE CONSTANTS 12-15

FILE CONTROL 14-5

FILE DESCRIPTION, DATA DIVISION
15-4

FILE MANIPULATION, COMPILER 21-7

FILE ORGANIZATION B-l

FILE SECTION, DATA DIVISION 15-3

FILE STATUS IS 14-5, 14-7

FILE STATUS KEY SETTINGS 14-8,
D-2

FILE STATUS KEY SETTINGS, INDEXED
1-0 19-5

FILE STATUS KEY SETTINGS,
RELATIVE I-O 20-4

FILE SYSTEM SUMMARY 3-1

FILE, EDITOR 4-9

FILENAMES 7-6, 12-19

FILLER 12-18, 15-20

FILMEM ALL, LOADER 6-3

FILMEM, LOADER 6-3

FILMEM, PRIMOS 4-2

FILVER, PRIMOS 4-2

FIND, EDITOR 4-9

FINDING A LINE BY STATEMENT
LABEL, EDITOR 4-10

FIXRAT, PRIMOS 4-2

FORMAT NOTATION 12-9

FORMS 11-9

FORMS MANAGEMENT SYSTEM 11-9

FTN, PRIMOS 4-2

FUNCTIONAL PROCESSING MODULES 2-1

FUNDAMENTAL CONCEPTS OF COBOL
12-1

FUTIL, PRIMOS 4-2

GIVING OPTION 16-4

GO TO STATEMENT 16-27

GROUP ITEM 12-24

HELP 7-3

HEXIDECIMAL ADDITION TABLE 1-2

X

INDEX

HEXADECIMAL AND DECIMAL
CONVERSION 1-1

HIGH-VALUE 12-16

HIGH-VALUES 12-16

HILOAD, PRIMOS 4-2, 6-3

1-0 CONTROL 14-8

IDENTIFICATION DIVISION 13-1

IDENTIFICATION DIVISION, REF2
13-3

IF STATEMENT 16-28

IMPERATIVE STATEMENTS 16-2

IMPLIED SUBJECT 12-37

INDEX 12-25

INDEX ITEM 12-25

INDEXED BY CLAUSE 15-23, 16-49,
16-52, 18-2

INDEXED 1-0 19-1

INDEXED 1-0 2-2

INDEXED SEQUENTIAL ACCESS METHOD,
ISAM B-l

INDEXED SEQUENTIAL FILES 19-1

INDEXING 12-38, 18-2

INDEXING, DIRECT 12-38

INDEXING, RELATIVE 12-38

INPUT MODE 4-8

INPUT, PRIMOS 4-2

INPUT-OUTPUT SECTION, ENVIRONMENT
DIVISION 14-5

INSERTION EDITING 15-30

INSPECT STATEMENT 16-32

INSTALLATION 13-1

INTER-PROGRAM COMMUNICATION 2-2,
17-1

INTERACTIVE 3-1

INTERNAL APPLICATION SORT
PROCEDURES 9-3

INTERNAL DECIMAL ITEM 12-25

INVALID KEY PHRASE 16-19, 16-42,
16-46, 16-54, 16-69, 19-6

INVOKING THE LOADER 6-3

JUSTIFIED 12-26, 15-15, 15-40,
16-34

KBUILD, MIDAS 11-1

KEY WORDS 12-15

KI/DA, KEYED INDEX DIRECT ACCESS
11-1

KIDDEL, MIDAS 11-3, 11-8

LABEL CLAUSE 15-4, 15-7

LABEL OPTIONS 15-7

LANGUAGE CONSIDERATIONS 12-9

LANGUAGE SPECIFICATIONS 12-12

LATE, PRIMOS 4-2

LBASIC, PRIMOS 4-2

LEVEL NUMBERS 12-17

LEVEL-NUMBER PHRASE 15-15, 15-17

LIBRARY 2-2

LIFE-CYCLE 15-12

LINE PRINTER LISTING 4-17

^

X -

INDEX

r LINKAGE SECTION EXAMPLE 17-5

LINKAGE SECTION, 15-48, 17-1,
17-2

LINKING LOADER 6-1

LISTF, PRIMOS 4-2

LISTING FILE, REF2 16-80

LISTING FILE, SAMPLE 12-7

LISTING PROGRAMS 4-17

LISTING, COMPILER 5-5

LISTING, PRIMOS 4-2

LITERALS 12-20

LOAD SEQUENCE, REF2 16-88

LOAD STATE DEFINITION 6-10

LOAD, PRIMOS 4-2, 6-1, 6-3

LOADER COMMAND FORMATS 6-5

LOADER COMMANDS 6-6

LOADER ERROR MESSAGES 6-15

LOADING SEGMENTED PROGRAMS 7-1

LOCATE, EDITOR 4-9

LOGICAL OPERATOR 12-35

LOGIN, PRIMOS 4-2

LOGOUT, PRIMOS 4-2

LOOK, PRIMOS 4-2

LOW-VALUE 12-16

LOW-VALUES 12-16

MACHK, PRIMOS 4-2

MAGNET 4-6

MAGNET, PRIMOS 4-2

MAGNETIC TAPE, READING 4-6

MAGRST, PRIMOS 4-2

MAGSAV, PRIMOS 4-2

MAKE, PRIMOS 4-2

MAP, LOADER 6-1

MAP, SEG 7-3

MAXUSR, PRIMOS 4-2

MCG, PRIMOS 4-2

MDL, PRIMOS 4-2

MEMORY MODE, COMPILER 5-5

MESSAGE, PRIMOS 4-2

MIDAS, 11-1

MIDAS, CREATK 11-1, C-1

MIDAS, KBUILD 11-1

MIDAS, KIDDEL 11-8

MIDAS, MINIMUM DIALOGUE 11-4, C-1

MIDAS, REMAKE 11-8

MIDAS, TEMPLATE 11-3, C-1

MNEMONIC-NAMES 12-9, 16-20

MNEMONICS, COMPILER 5-4, 21-1

MODE COLUMN, EDITOR 4-14

MODE NCOLUMN, EDITOR 4-15

MODE NUMBER, EDITOR 4-9

MODIFY, SEG 7-3

MODIFYING A LINE WITHOUT CHANGING
CHARACTER POSITIONS, EDITOR 4-10

INDEX

MOVE STATEMENT 16-34

MOVES, PERMISSABLE 16-35, D-5

MOVING LINES OF CODE, EDITOR 4-10

MTDSK, PRIMOS 4-2

MTN 4-4

MULTIPLE (KEYED) INDEX DATA
ACCESS SYSTEM 11-1

MULTIPLE CONDITION 12-37

MULTIPLY STATEMENT 16-36

NEGATING CONJUNCTION 12-37

NESTED IF'S 16-30, 16-31

NEXT SENTENCE PHRASE 16-48

NON-NUMERIC COMPARISONS 12-32,
12-33

NON-NUMERIC LITERALS 12-20

NUCLEUS 2-1

NUMBER, PRIMOS 4-2

NUMERIC COMPARISONS 12-32

NUMERIC EDITED OR REPORT ITEM
12-24

NUMERIC ITEM 12-24

NUMERIC LITERALS 12-21

OBJECT COMPUTER 14-3

OBJECT FILE AS INPUT, SEG 7-2

OCCURS CLAUSE 15-15, 15-23, 18-2

OCTAL AND DECIMAL CONVERSION 1-1

ON OVERFLOW PHRASE 16-57

OPEN STATEMENT 16-37

OPEN STATEMENTS VS ACCESS MODES
16-38, D-4

OPEN, PRIMOS 4-2

OPERANDS, OVERLAPPING 12-31

OPERATING SYSTEM MODES 3-1

OPERATOR, LOGICAL 12-35

OPERATOR, RELATIONAL 12-32

OPERATORS 12-16

OPERATORS, ARITHMETIC 12-28

OPRPRI, PRIMOS 4-2

OPTIONAL WORDS 12-15

ORGANIZATION IS 14-5, 14-7

OVERLAPPING OPERANDS 12-31

OVERLAYING COMMENTS AFTER CODE IS
WRITTEN, EDITOR 4-10

OWNER IS 15-4, 15-11

PACKED DECIMAL 12-25, 15-6

PAGE, WRITE STATEMENT 16-69

PARAGRAPH-NAMES 12-19

PASSWD, PRIMOS 4-2

PERFORM STATEMENT 16-39

PHANTOM USERS 3-1

PHANTOM, PRIMOS 4-2

PICTURE CHARACTER-STRINGS ,12-12

PICTURE CLAUSE 15-15, 15-26

PICTURE CLAUSE SYMBOLS 15-28

PICTURE CLAUSE, EXAMPLES 15-35

PM, PRIMOS 4-2

X - 8

INDEX

r
PMA, PRIMOS 4-2

POINT, EDITOR 4-9

PRERR, PRIMOS 4-2

PRIMOS COMMAND SUMMARY 4-1

PROCEDURE DIVISION 16-1

PROCEDURE DIVISION, REF2 16-72

PROGRAM ENVIRONMENTS 3-1

PROGRAM STATISTICS (64V) 5-3

PROGRAM, SAMPLE 12-5

PROGRAM-ID 13-1

PROGRAMMER-DEFINED WDRDS 12-13 ,
12-17

PROTECT, PRIMOS 4-2

PRSER, PRIMOS 4-2

PRVER, PRIMOS 4-2

PSD, PRIMOS 4-2

PSD, SEG 7-4

PSD160, PRIMOS 4-2

PSD20, PRIMOS 4-2

PTCPY, PRIMOS 4-2

PTR, PRIMOS 4-4

PUNCHED CARDS, READING 4-5

PUNCHED PAPER TAPE, READING 4-8

PUNCTUATION RULES 12-10

PUSS, PRIMOS 4-2

QUALIFICATION OF NAMES 12-21

QUALIFICATION RULES 12-22

QUEUED JOBS USING COMMAND FILES
3-1

QUIT, SEG 7-4

QUOTE 12-16

QUOTES 12-16

RANDOM, INDEXED 1-0 19-3, 19-11

RANDOM, RELATIVE 1-0 20-2

READ STATEMENT 16-42

READING MAGNETIC TAPE 4-6

READING PUNCHED CARDS 4-5

READING PUNCHED PAPER TAPE 4-8

READY TRACE STATEMENT 16-44

RECORD CONTAINS 15-4, 15-9

RECORD DESCRIPTION CLAUSE 15-15

RECORD KEY PHRASE, INDEXED 1-0
19-3

REDEFINES CLAUSE 15-15, 15-21

REF2, COMPILE SEQUENCE 16-79

REF2, CREATK SEQUENCE 16-89

REF2, DATA DIVISION 15-50

REF2, ENVIRONMENT DIVISION 14-9

REF2, EXECUTE SEQUENCE 16-91

REF2, EXPANDED LISTING FILE J-1

REF2, IDENTIFICATION DIVISION
13-3

REF2, LISTING FILE 16-80

REF2, LOAD SEQUENCE 16-88

REF2, PROCEDURE DIVISION 16-72

X

INDEX

RELATION CHARACTERS 12-16

RELATION CONDITIONS 12-31, 16-29

RELATIONAL OPERATOR 12-32

RELATIVE FILE PROCESSING 20-1

RELATIVE 1-0 2-1

RELATIVE 1-0 20-1

RELATIVE INDEXING 12-38, 18-3

REMAINDER CLAUSE 16-22

REMAKE, MIDAS 11-3, 11-8

REMARKS 13-1

REPAIR, MIDAS 11-3

REPORT ITEM 12-24

RESERVE 14-5 , 14-7

RESERVED WORDS 12-11, 12-15, H-1

RESET TRACE STATEMENT 16-45

RESTORE, PRIMOS 4-2

RESTORE, SEG 7-4

RESUME, EXECUTING 8-1

RESUME, PRIMOS 4-3

RESUME, SEG 704

REWRITE STATEMENT 16-46

RMODE RUN-TIME ERROR MESSAGES
G-13

ROUNDED OPTION 16-4

ROUNDING RESULTS 16-5

RUN-TIME ERROR MESSAGES 8-4

RUNOFF, PRIMOS 4-3

SAME AREA 14-8

SAMPLE, PROGRAM EXAMPLE 12-5

SAVE, PRIMOS 4-3

SAVING FILES 4-9

SEARCH STATEMENT 16-48, 18-2,
18-5

SECTION-NAMES 12-19

SECURITY 13-1

SEG 7-1

SEG COMMAND SUMMARY 22-1

SEG COMMANDS 7-3

SEG LOADER ERROR MESSAGES G-16

SEG MESSAGES 7-5

SEG, FREQUENTLY USED AND
ESSENTIAL COMMANDS 7-6

SEG, OBJECT FILE AS INPUT 7-2

SEG, PRIMOS 4-3

SEGMENTED RUNFILES 7-1

SEGS LOADER 7-1

SEGS LOADER, FUNCTIONAL STRUCTURE
7-2

SELECT 14-5, 14-6

SELECT CLAUSE, DEVICE
SPECIFICATIONS 14-6

SEQUENTIAL ACCESS METHOD (SAM)
B-l

SEQUENTIAL 1-0 2-1

SET STATEMENT 16-52, 18-2, 18-5

SETIME, PRIMOS 4-3

V

X - 10

INDEX

r
SHARE, PRIMOS 4-3

SHARE, SEG 7-4

SHARED PROCEDURES 3-1

SHUTDN, PRIMOS 4-3

SIGN CONDITION 12-34

SIGN IS CLAUSE 15-15, 15-37

SIGN IS SEPARATE 15-15, 15-37

SIGN REPRESENTATION 15-38

SIGNS, ALGEBRAIC 12-27

SIMPLE CONDITIONS 12-31

SINGLE, SEG 7-4

SIZE ERROR OPTION 16-4, 16-5

SIZE, PRIMOS 4-3

SLIST, PRIMOS 4-3, 4-17

SORT 9-2

SORT CONSIDERATIONS 9-4

SORT PROCEDURES 9-1

SORT ROUTINES, EXTERNAL/INTERNAL
9-1

SORT, PRIMOS 4-3

SORT-END-COLUMN 9-4

SORT-INPUT-FILE 9-3

SORT-ITEMS 9-4

SORT-OUTPUT-FILE 9-3

SORT-PAIRS 9-4

SORT-PASSES 9-4

SORT-START-COLUMN 9-4

SOURCE COMPUTER 14-3

SPACE 12-16, 16-4

SPACES 12-16, 16-4

SPECIAL CHARACTERS, EDITOR 4-9

SPECIAL NAMES 14-3

SPECIAL-CHARACTER WORDS 12-16

SPECIFY INPUT/OUTPUT DEVICES,
COMPILER 5-4

SPOOL, PRIMOS 4-3, 4-17

STACK 7-3

STANDARD ALIGNMENT RULES 12-26

START STATEMENT 16-54

START, EXECUTING 8-1

START, PRIMOS 4-3

STARTUP, PRIMOS 4-3

STATEMENTS, COBOL 16-6, D-l

STATUS KEY SETTINGS 14-8, D-2

STATUS, PRIMOS 4-3

STOP STATEMENT 16-56

STRING STATEMENT 16-57

SUBJECT, IMPLIED 12-37

SUBSCRIPTING 12-38, 18-4

SUBSRT 9-3, 9-4

SUBTRACT STATEMENT 16-60

SVCSW, PRIMOS 4-3

SYMBOLS, PICTURE CLAUSE 15-28

SYNC 15-39

- 11

INDEX

SYNCHRONIZED CLAUSE 15-15, 15-39

SYSTEM ACCESS 4-1

SYSTEM FILES 2-2

SYSTEM RESOURCES SUPPORTING COBOL
3-1

TA, PRIMOS 4-3

TABLE HANDLING 18-1

TABLE HANDLING 2-2

TABSET, EDITOR 4-8, 4-9, 4-17

TALLYING IN PHRASE 16-62

TALLYING PHRASE 16-32

TAP, PRIMOS 4-3

TAPE FORMATS, EXECUTION 8-4

TEMPLATE, MIDAS 11-3

TERM, PRIMOS 4-3

TERMINAL LISTING 4-17

TEXT EDITOR 4-8

TIME, ACCEPT STATEMENT 16-8

TIME, PRIMOS 4-3

TIME, SEG 7-4

TOP, EDITOR 4-9

TRAMLC, PRIMOS 4-3

TREENAMES 7-6

UDOS64, PRIMOS 4-3

UNARY ARITHMETIC OPERATORS 12-28

UNASSIGN, PRIMOS 4-3, 4-5

UNCOMPRESSED 15-6

UNSTRING STATEMENT 16-62

UP BY 16-52

UPCASE, PRIMOS 4-3

USAGE IS CLAUSE 15-15, 15-36

USE STATEMENT 16-67

USERS, PRIMOS 4-3

USING MIDAS 11-1

USING SEG 7-5

USING STATEMENT 16-1, 16-12,
17-3, 18-2

USING THE COMPILER 5-1

USING THE EDITOR 4-8

USING THE LOADER 6-4

USRASR, PRIMOS 4-3

VALUE IS 15-15, 15-43

VALUE OF FILE-ID IS 15-4, 15-10

VARYING PHRASE 16-39, 16-48,
16-49

VCOBLB 2-3

VERBS, COBOL 16-6, D-l

VESTIGIAL COMMANDS, SEG 7-5

VKDALB 11-1

VLOAD, SEG 7-4

VMODE LISTING FILE, REF2 J-l

VMODE RUN-TIME ERROR MESSAGES
G-16

VPSD, PRIMOS 4-3

VPSD16, PRIMOS 4-3

O

X - 12

INDEX

VRTSSW, PRIMOS 4-3

WAIT (-WAIT) 4-4

WARNING MESSAGES, COMPILER G-12

WHERE, EDITOR 4-9

WITH POINTER PHRASE 16-57, 16-62

WORD FORMATION 12-12

WORKING-STORAGE SECTION 15-46

WRITE STATEMENT 16-69

ZERO 12-16

ZEROES 12-16

ZEROS 12-16

- 13

s

4

r>

	Front Cover
	Prime Software Documentation Family
	Prime's COBOL Programmer's Guide
	i-1
	Copyright
	i-2
	Contents
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8
	i-9
	i-10
	Illustrations
	i-11
	Tables
	i-12
	Acknowledgement
	i-13
	Part I
	An Overview of Prime's COBOL
	Section 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	Section 2
	Prime COBOL Summary
	2-1
	2-2
	2-3
	Section 3
	COBOL and PRIMOS
	3-1
	Part II
	Using the Prime System
	Section 4
	System Access
	4-1
	4-2
	4-2
	4-1
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	Section 5
	Compiling a Source Program
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	Section 6
	Loading and Linking
	6-2
	4-4
	4-3
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	Section 7
	Loading Segmented Programs
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	Section 8
	Executing the Loaded Program
	8-1
	8-2
	8-3
	8-4
	Section 9
	Sort Procedures
	9-1
	9-2
	9-3
	9-4
	9-5
	Part III
	Advanced Concepts
	Section 10
	COBOL Program Environments, Expanded
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	Section 11
	Management Systems and Language Interface
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	Part IV
	Reference
	COBOL Concepts
	Reference
	Section 12
	Fundamental Concepts of COBOL
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	Section 13
	Identification Division
	13-1
	13-2
	13-3
	Section 14
	Environment Division
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	Section 15
	Data Division
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	Nucleus
	Reference
	Section 16
	Procedure Division
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	16-49
	16-50
	16-51
	16-52
	16-53
	16-54
	16-55
	16-56
	16-57
	16-58
	16-59
	16-60
	16-61
	16-62
	16-63
	16-64
	16-65
	16-66
	16-67
	16-68
	16-69
	16-70
	16-71
	16-72
	16-73
	16-74
	16-75
	16-76
	16-77
	16-78
	16-79
	16-80
	16-81
	16-82
	16-83
	16-84
	16-85
	16-86
	16-87
	16-88
	16-89
	16-90
	16-91
	Functional Processing Modules
	Reference
	Section 17
	Inter-program Communication
	17-1
	17-2
	17-3
	17-4
	17-5
	Section 18
	Table Handling
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	Section 19
	Indexed Sequential Files/Indexed I-O
	19-1
	19-2
	19-3
	19-4
	19-5
	19-6
	19-7
	19-8
	19-9
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	Section 20
	Relative File Processing/Relative I-O
	20-1
	20-2
	20-3
	20-4
	20-5
	20-6
	20-7
	20-8
	20-9
	20-10
	20-11
	20-12
	20-13
	20-14
	Utilities
	Reference
	Section 21
	Compiler Reference Information
	21-1
	21-2
	21-3
	21-4
	21-5
	21-6
	21-7
	Section2 22
	SEG Reference
	22-1
	22-2
	22-3
	22-4
	22-5
	22-6
	22-7
	22-8
	22-9
	22-10
	22-11
	22-12
	22-13
	22-14
	Appendix A
	Prime COBOL Summary
	A-1
	A-2
	A-3
	Appendix B
	Fiel Organization
	B-1
	Appendix C
	Creating ISAM and Relative Files
	C-1
	C-2
	C-3
	C-4
	C-5
	Appendix D
	Reference Tables
	D-1
	D-2
	D-3
	D-4
	D-5
	Appendix E
	ASCII Character Set
	E-1
	E-2
	E-3
	Appendix F
	COBOL Symbols
	F-1
	F-2
	F-3
	Appendix G
	Error Messages
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	Appendix H
	Reserved Words
	H-1
	H-2
	Appendix I
	Conversion Tables
	I-1
	I-2
	Appendix J
	Expanded Listing for VMODE
	J-1
	J-2
	J-3
	J-4
	J-5
	J-6
	J-7
	J-8
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	

